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Chapter 1
Introduction

After von Weizsäcker’s work no serious attempt seems ever to
have been made to elaborate further a many-valued logical
approach to quantum mechanics
(Max Jammer, The Philosophy of Quantum Mechanics, (1974),
p. 379)

Quantum mechanics is an extremely efficient theory and up-to-now no experiment
designed to check it yielded results indicating that it could be wrong. Even more:
present technological progress approaches the point at which it will be possible
to gain full control on single quanta, which would make marvellous predictions of
two newly-born branches of quantummechanics: quantum information and quantum
computation [1] fully realizable.However, this theoretical and technological progress
is not accompanied by the progress in our “understanding” (whatever it could mean)
of quantum phenomena.

According to Webster’s Third New International Dictionary “interpretation”
means “explanation of what is not immediately plain or explicit”. Indeed, quan-
tum mechanics is full of concepts, symbols and objects that are not immediately
plain or explicit since they have no counterparts in our everyday life. Actually, how
couldwe imagine, for example, amaterial object being simultaneously in two distinct
places or being at the same time a particle and a wave, when all our “macroscopic”
experience says that this is impossible? An “interpretation” of quantum mechanics
should explain at least some of such conundrums in a way that could be accepted
by us: macroscopic beings whose intuition grows up exclusively on macroscopic
phenomena.

The interpretation of quantummechanics proposed in this work is based onmany-
valued logic and observation that people, usually unconsciously, use this logic while
considering future events, the occurence or non-occurence of which is not sure
at present. Jan Łukasiewicz formalized this idea in his numerous papers [2], and

© The Author(s) 2015
J. Pykacz, Quantum Physics, Fuzzy Sets and Logic,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-19384-7_1
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2 1 Introduction

argued that truth-values of non-certain statements concerning future events (future
contingents) equal the probability (possibility? likelihood?) that these statements
will, at due time, occur to be true. In “macroscopic” cases considered by Łukasiewicz
these probabilities were supposed to be evaluated in a subjective and imprecise way.
Fortunately, in quantum mechanics these probabilities are provided by the theory
and are precisely known.

Quantum physics and modern theory of many-valued logics were born nearly
simultaneously in the third decade of the twentieth century. However, the attempts
at applying many-valued logics to the description of quantum systems expired soon
afterWorldWar II. Thiswas the situation that persisted at least until the early seventies
when Max Jammer in his book [3] published in 1974 wrote the words which have
been chosen as a kind of anti-motto to this work.

The recently observed revival of interest in applying many-valued logics to the
description of quantumphenomena is closely connectedwith a newand rapidly devel-
oping branch ofmathematics: fuzzy set theory. Fuzzy sets remain in the same relation
to infinite-valued logic as traditional sets to classical two-valued logic. Therefore,
truth-values of many-valued statements about results of future experiments on quan-
tum objects may be, equivalently, treated as degrees to which these objects possess
respective properties before they are measured.

The book is organized as follows: A brief survey of main interpretations of quan-
tum mechanics is given in Chap.2. Chapter 3 contains introduction to many-valued
logics while Chap.4 gives the rudiments of the fuzzy set theory and shows its links
with the infinite-valued Łukasiewicz logic. Chapter 5 contains a short historical sur-
vey of attempts at applying non-classical logics to the description of quantum phe-
nomena, from Zawirski’s attempts in the early thirties to von Weizsäcker’s papers
published in the late fifties of the twentieth century. Out of these attempts only the
Birkhoff and von Neumann proposal to use a two-valued but non-distributive logic
gained wide popularity and is still in use nowadays. Chapter 6, of rather technical
character, is devoted to this kind of “quantum logic” and presents it through three
models: the traditional algebraic model, Ma̧czyński’s functional model, and finally
the fuzzy set one, elaborated in a series of papers by the present author. The fuzzy set
model of the Birkhoff–von Neuman quantum logic enables it to be expressed imme-
diately in the language of the infinite-valued Łukasiewicz logic. This procedure,
developed in Chap.7, allows the Birkhoff–von Neuman quantum logic to be treated
as a special kind of infinite-valued Łukasiewicz’s logic with partially defined con-
junction and disjunction. This unifies two competing approaches: the many-valued,
and the two-valued but non-distributive one, which have co-existed in the quantum
logic theory since its very beginning. This also clarifies the long-standing problem
of proper models for the disjunction and conjunction of experimentally verifiable
propositions about quantum systems and allows a logical analysis to be performed
of the two-slit experiment.

Chapter 8 contains some speculations about the new perspectives opened by the
proposed approach. Finally, Chap.9 is devoted to the concise exposition of the pro-
posedmany-valued interpretation of quantummechanics, performed in a way similar
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to the way in which other interpretations of quantum mechanics were presented in
Chap.2, which makes their comparison more easy.

This book was financed by the grant 2011/03/B/HS1/04573 of the Polish National
Foundation for Science (NCN).
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Chapter 2
A Brief Survey of Main Interpretations
of Quantum Mechanics

Since descriptions and comments on the plethora of various interpretations of
quantum mechanics are widely accessible (see, e.g., [1, 2]), we give in this chapter
only a very brief survey of the most popular of them. We stress that our presentation
and evaluation of various interpretations is highly subjective. In particular, in our
opinion ontic determinism precludes the existence of free will, which we treasure,
therefore indeterminism is in our opinion a virtue, not a drawback of an interpretation.

The other difficulty in presenting such a brief survey of various interpretations of
QM is caused by the fact that most of them are not uniquely defined. We tried in each
case to extract a bunch of ideas that could be treated as a “common denominator”
by various adherents of an interpretation, but in many cases this occurred to be a
difficult task.

It should be also noticed that not all “interpretations of QM” presented in
the literature are interpretations in the strict sense of this word, i.e., interpretations of
the “bare” mathematical (Hilbert space) formalism of the orthodox quantum theory.
In many cases an “interpretation” introduces or at least foresees various modifica-
tions of the usual mathematical formalism of QM, so it should be rather called a
“theory”. Since in this brief survey we decided to confine to “interpretations of QM”
in the strict sense of this word, we do not mention here such important proposals
as Ghirardi et al. [3], or other “Objective Collapse Theories”, or “Hidden Variables
Interpretations”.

The simplest test that allows to distinguish between an interpretation and a the-
ory is the existence or nonexistence of experimental proposals that could, at least
theoretically, distinguish it from the other ones, since no two interpretations of QM,
by the very definition of this notion, could be distinguished in this way. Therefore,
if a set of ideas pertaining to QM allows for its experimental discrimination from
the other ones, it should be rather called a theory, not an interpretation. However,
in many cases this issue is not settled even among various proponents of a specific
interpretation, which causes the issue of filtering out interpretations from theories
an extremely difficult task.

© The Author(s) 2015
J. Pykacz, Quantum Physics, Fuzzy Sets and Logic,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-19384-7_2
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6 2 A Brief Survey of Main Interpretations of Quantum Mechanics

2.1 Ensemble Interpretation

Ensemble Interpretation (EI), called also Statistical Interpretation, takes literally
Born’s probabilistic interpretation of squared modulus of the wave function. There-
fore, it assumes that the wave function does not refer to an individual quantum object,
but to a statistical ensemble of such “identically prepared” objects. This ensemble
can be either meant literally, as it is in the case of myriads of identically prepared
photons emitted by a source, or it can be meant “abstractly” as an “imaginary col-
lection” of multiple copies of an individual object. It seems that this interpretation of
QM was supported by Einstein who, however, went further and inferred from it that
the “orthodox” QM should be supplemented by hidden variables, while in general
there is no such assumption in contemporary expositions of the EI. More recently
EI was promoted vigorously by Ballentine [4, 5] (see also extensive bibliography at
Ulf Klein’s website [6]).

Main idea:

• Wave function is an abstract concept that refers to an ensemble of quantumsystems.
In particular, there does not exist anything like “wave function of an individual
quantum system”.

Virtues:

• EI is “minimal” in the sense that it does not make use of any metaphysical assump-
tions.

• No problems with measurements, collapse, Schrödinger’s cats, etc.

Drawbacks:

• EI does not satisfy our deep desire for “final answers”.
• Impossibility to explain “quantum Zeno effect”.

2.2 Copenhagen Interpretation

Out of all interpretations of quantummechanics proposed up to now, the Copenhagen
Interpretation (CI), in spite of being still the most popular (see the results of a poll
executed by Schlosshauer et al. [7]), is the worst-defined one. According to Peres [8]:
“There seems to be at least as many different Copenhagen Interpretations as people
who use that term, probably there are more”.

CI has its roots in Bohr’s and Heisenberg’s ideas elaborated in the town of
Copenhagen in the late twenties of the XX century. Nevertheless, the very name
“Copenhagen Interpretation” was attached to this bunch of ideas not before than in
the fifties. It should be also noticed that ideas usually presented in textbooks as CI are
not entirely identical with original ideas of Bohr and Heisenberg which, moreover,
were also different from each other in some details.
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Main ideas:

• Quantum objects display either wave-like or particle-like properties. It is an
experimental arrangement that defines which properties can be observed.

• Quantum mechanics is fundamentally about observations or results of measure-
ments.

• It is meaningless to talk about properties of quantum objects before they are mea-
sured.

• Wave function is a mathematical concept. Physical meaning has its squared mod-
ulus which, according to Born’s rule, defines probabilities of obtaining various
experimental results.

• Wave functions evolve in two ways:

1. Deterministically, according to Schrödinger equation, when no measurement is
made.

2. Indeterministically (“collapse” or “reduction”) when measurement is made.

• Hilbert space description of quantum phenomena is the ultimate one. In particular,
there are no hidden variables that could explain random behaviour of quantum
objects. Therefore, quantum probabilities are ontic, not epistemic.

Virtues:

• Fundamental indeterminism of the quantum world.

Drawbacks:

• Artificial division of the physical world into the quantum world and the classical
world.

• The “objectification problem”, i.e., a problem how “potential” properties become
“actual” in the course of a measurement.

2.3 Pilot-Wave Interpretation

The Pilot-Wave Interpretation (PWI), known also as Causal or Ontological Inter-
pretation, de Broglie–Bohm theory, or Bohmian mechanics, is based on the ideas
presented by de Broglie in 1927 in a paper [9] published in Le Journal de Physique
et le Radium and also presented at the 5th Solvay Conference, and later on redis-
covered by Bohm [10]. It seems that the majority of advocates of this interpretation
(although not all) maintain that all experimental predictions of the de Broglie–Bohm
theory are exactly the same as predictions of the “orthodox”QM, therefore according
to them, it is really an interpretation of QM in the narrow sense of this word.

Main ideas:

• Both “wave-like” and “particle-like” aspects of quantumobjects have simultaneous
reality: quantum particles move along definite trajectories guided by their pilot
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waves. In particular, in a two-slit experiment a particle goes through one slit only
but its pilot wave goes through both slits, interferes with itself, and attracts the
particle to the areas of constructive interference.

• Pilot waves are represented mathematically by solutions of Schrödinger equation.
They never collapse.

• The actual positions of particles are “hidden variables”.

Virtues:

• PWI provides a “classical-like”, visible and easy to comprehend image of the
microworld.

• No measurement problem.

Drawbacks:

• Manifest nonlocality.
• Determinism.

2.4 Many-Worlds Interpretation

The cornerstone of the Many Worlds Interpretation (MWI) was laid down by Hugh
Everett III in his PhD thesis [11] (reprinted in [12], see also paper [13] based on
this thesis). Nevertheless, it should be noticed that Everett himself never jumped
into far-reaching ontological conclusions drawn by his followers, and only stated
enigmatically: “From the present viewpoint all elements of superposition are equally
‘real”’ ([12], pp. 116–117).

Actually, the very name MWI and explicit formulation of the idea that “every
quantum transition taking place on every star, in every galaxy, in every remote corner
of the universe is splitting our local world on earth into myriads of copies of itself ”
is due to DeWitt [14].

Among other distinguished advocates of the MWI are Deutsch [15, 16] and Vaid-
man [17]. It should be noticed that according to the results of a poll executed by
Schlosshauer et al. [7]), the MWI occurred to be the second w.r.t. popularity after the
Copenhagen Interpretation.

Main ideas:

• There exists the “basic physical entity”: the universal wave function, that never
collapses.

• At every “moment of choice”: a photon either passes through a semi-transparent
mirror or is reflected, Schrödinger’s cat is either poisoned or not, a universe that we
witness (which is only one copy of myriads of its copies that form the Multiverse)
splits into separate, equally real copies in which either this or that course of events
takes place. Adherents of the MWI are not unanimous whether these different
copies can somehow “influence” or “feel the existence” of the others or not.
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Virtues:

• Observers and measurements play no special role.
• No problems with collapse.
• According to Vaidman [17] “The MWI resolves most, if not all, paradoxes of

quantum mechanics.”

Drawbacks:

• Extremely weird ontology.
• The very idea of replacing the unique Universe by myriads of its copies that form
the Multiverse seems to be in deep contradiction to the idea of the Ockham Razor
that successfully guides Western Philosophy for centuries.

• Indeterminism observed in the microworld is only apparent since the universal
wave function evolves deterministically.

2.5 Consistent Histories Interpretation

The Consistent Histories Interpretation (CHI) is sometimes proclaimed by its advo-
cates as “Copenhagen done right”. It was originated by Griffiths [18, 19], followed
by Omnès [20, 21], and by Gell-Mann and Hartle [22] who used the term “deco-
herent histories”. It is based on the notion of a history which is thought of as a
time-sequence of properties actually possessed by a quantum object in consecutive
instants of time. This sequence is mathematically represented by a tensor product
of projection operators. Boundles of such histories, called frameworks are analogs
of sample spaces in classical probability theory, and allow to define on them prob-
abilities that coincide with probabilities yielded by Born’s rule. However, it should
be stressed that to a specific framework belong only histories that are consistent in
the sense that at any instant of time they do not contain properties represented by
non-commuting projectors.

Main ideas:

• Wave function is a tool for calculating probabilities, not a representation of reality.
• Time development of a quantum system is a stochastic process.
• All frameworks are equally “real”.
• The single framework rule: Any discussion about properties of quantum objects
has to be confined to a single framework. Using in the discussion properties that
belong to incompatible frameworks is the source of paradoxes.

• Measurements reveal actually existing properties of quantum objects, however a
property that exists in some frameworks may not exist in others.

Virtues:

• No measurement problem, no superluminal influences, no paradoxes.
• Fundamental indeterminism.
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Drawbacks:

• Highly unclear ontology.
• Actuality of properties depends on the chosen framework (“relativity of reality”).

2.6 Modal Interpretations

The name of this class of interpretations refers to modal logic, i.e., logic capable of
taking into consideration sentences expressing necessity, possibility and contingency.

Originally therewas a singlemodal interpretation (MI) of non-relativistic quantum
mechanics proposed by van Fraassen [23]. Later on various researchers involved in
this line of investigation developed slightly different approaches which, however, are
usually collectively called “modal interpretations”.

Characteristic to all MIs is a distinction between the dynamical state of a quantum
system, which determines what may be the case and is just the quantum state of the
orthodox QM, and the value state which represents all properties that the system
actually possesses at a given instant. In various versions of MIs various observables
are chosen as “privileged”, i.e., always possessing definite values.

Main ideas:

• The standard formalism of QM, however without the projection postulate, is
accepted.

• Quantum systems possess all the time definite properties that define their value
states.

• The dynamical state that always evolves according to Schrödinger equation and
never collapses defines what the possible properties of a system and their corre-
sponding probabilities are.

Virtues:

• No measurement problem.
• Indeterminism.

Drawbacks:

• Unclear ontology which is, moreover, different in different versions of MIs.

2.7 Relational Quantum Mechanics

The main assumption of Relational Quantum Mechanics (RQM), originated by
Rovelli [24], states that QM is not an “absolute” description of reality but rather
deals with relations between various objects. Consequently, the notion of “observer-
independent” description of the world is declared as being unphysical. Different
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observers may give different descriptions of the same event. However, it should be
noticed that this refers only to “hierarchical” sets of observers: the “prime” observer
is O that observeswhat’s going on in an observed system S, the “secondary” observer
is P that observes what’s going on in a system S + O , and so on...

Main ideas:

• All physical systems are, fundamentally, quantum systems.
• QM is a “complete” theory: there are no hidden variables or other items that should
be added to it.

• QM is not about properties of objects, but about relations between objects.
• Measurement is an ordinary physical interaction.
• “Absolute” or “observer-independent” state of a quantum system has no meaning.

Virtues:

• Ontological parsimony.
• It is claimed [25] that RQM allows for such reformulation of the original EPR
conditions, that apparent conflict between QM and special relativity disappears.

Drawbacks:

• Relativity of properties of physical objects (even if only w.r.t. “hierarchical” set
of observers).

• Not clearly stated position w.r.t. the determinism/indeterminism issue.

2.8 Other, Less Popular Interpretations

Seven main interpretations outlined above definitely do not exhaust the list of up to
now proposed interpretations of QM. Among the other ones we can mention the
following:

• “Consciousness Causes Collapse”: a rather extreme point of view ascribed to von
Neumann [26] and Wigner [27, 28].

• Many Minds Interpretation [29, 30]: a “subjective offspring” ofMWI, inwhich the
multitude of “parallel universes” is replaced by themultitude of “minds” associated
with each sentient being.

• Transactional Interpretation [31] inwhich a quantumevent is a result of a “transac-
tion” between advanced (backward-in-time) and retarded (forward-in-time)waves.

• Information Interpretation which assumes that “the QM-formalism describes
information about micro systems extracted by means of macroscopic measure-
ment devices” [32]. This relatively new interpretation quickly gains popularity
and most probably will be considered as belonging to the mainstream soon (see,
e.g., [33, 34]).
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2.9 Summary

All interpretations of QM presented in this Chapter are based on 2-valued logic.1

This is not a surprise, taking into account that 2-valued logic successfully guided
Western Science for centuries. Actually, till Łukasiewicz there were no alternatives,
and even later on many-valued logics wandered on the fringes of the mainstream
of Science, and were regarded as a mathematical curiosity with no relation to the
physical world.

Most probably to the majority of scientists the idea of going beyond the 2-valued
logic in the description of the physical reality is as aberrant as it would be the idea
of abandoning Ptolemaic system before the Copernicus or leaving the domain of
Euclidean flat geometry before Einstein.

However, the accumulation of “paradoxes” and development of more and more
weird interpretations of QM is maybe a sign that this Gordian knot should be cut by
transgressing the boundaries encircled by the 2-valued logic. The rest of this work
is devoted to the presentation and justification of this proposal.
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Chapter 3
A Brief Survey of Many-Valued Logics

Classical, two-valued logic deals exclusively with statements which can be
unambiguously classified as being either true or false. Other statements simply do
not belong to the domain of classical logic. In particular this applies to statements
concerning future events, a problem already noticed by Aristotle in considering
the statement since then widely quoted, “There will be a sea battle tomorrow”. It
should be mentioned that, despite the tradition of calling classical two-valued logic
“Aristotelian logic”, there are indications [1] that Aristotle himself classified “future
contingents”, i.e. statements about future events which are not yet decided, as neither
true nor false.1

The problem of future contingents was also discussed in the Middle Ages and it
seems that such scholars as Duns Scotus and William of Ockham in the thirteenth
and the fourteenth centuries and Peter de Rivo in the fifteenth century considered
such statements as indeterminate.

Modern attempts at establishing non-classical logical systems, mostly three-
valued ones, began at the end of the nineteenth century. In 1897 Hugh MacColl
investigated so called “three-dimensional logic” and in 1909 Charles Peirce con-
sidered “triadic logic” as a possible basis for “trichotomic mathematics”. In 1910
Nicolai Vasil’ev in Kazan, Russia, built a system of three-valued “imaginary (non-
Aristotelian) logic”, whose name obviously referred to “imaginary (non-Euclidean)
geometry” which had been presented for the first time at the same university 84years
earlier by Nicolai Lobachevskij.

Jan Łukasiewicz is generally recognized as a founding father of the modern the-
ory of many-valued logics and his numerous papers on this subject, published from

1Łukasiewicz in many of his papers [2] claimed that the law of bivalence is actually due to the
Stoics, especially Chrisippus who “...appears to have been the first logician to consciously set up
and stubbornly defend the theorem that every proposition is either true or false” (quotation from
[1]). Therefore, Łukasiewicz proposed to call his many-valued logic “non-Chrisippean” rather than
“non-Aristotelian”.

© The Author(s) 2015
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1920 until his death in 1956, are well-known. In contrast to these papers, his book-
let “Die logischen Grundlagen der Wahrscheinlichkeitsrechnung” [3], published in
1913, although evaluated as “one of Łukasiewicz’s most valuable works” in the
foreword to Łukasiewicz’s Selected Works [2], is relatively less-known. In this book-
let he considered statements containing a variable, e.g. “x is an Englishman” and he
attributed to them truth-value equal to the ratio of the number of values of a variable
for which this statement is true to the total number of values of this variable. Since he
assumed the total number of values of a variable to be finite, the logic thus obtained
is n-valued with n being a natural number depending on the particular situation
described by a proposition. Łukasiewicz’s principal aim in his 1913 paper [3] was
to give the logical background to the notion of probability which at that time was
much more alien to the rest of mathematics than it is now. An n-valued non-classical
logic, which nowadays can be classified as a probability logic was only a kind of a
by-product of these efforts and never gained such popularity as his later versions of
many-valued logics, which were investigated after 1920.

The year 1920 is generally recognized as the year of the birth of themodern theory
of many-valued logics. In fact, in this year two seminal papers on this theory were
published independently by Jan Łukasiewicz in Poland [4] and by Emil Post in the
USA [5]. Łukasiewicz arrived at his construction of a three-valued logic after a long
period of philosophical investigations concerning the problems of determinism (cf.
his numerous papers collected in [2], especially [6]), and of modal propositions, i.e.
propositions of the form: “It is possible (impossible, contingent, necessary) that…”
[1]. He openly declared himself a devoted adherent of indeterminism who, in his
own words [7], “...declared a spiritual war upon all coercion that restricts man’s
free creative activity”. The Chrisippean law of bivalence, which states that every
proposition is necessarily either true or false, took the form of a fortress in this
war, which had to be blown up since it blocked the way towards indeterminism.
Łukasiewicz argued that determinism follows necessarily from the law of bivalence,
not from the law of excluded middle, which only states that the disjunction of any
proposition and its negation, e.g. “there will be a sea battle tomorrow or there will
not be a sea battle tomorrow” is always a true proposition. According to Łukasiewicz,
who also claimed that this had been the original position taken by Aristotle, such
disjunction may remain true even if neither of its constituents are either true or false.

Łukasiewicz in the majority of his papers on three-valued logic denoted this
additional truth-value by the number 1/2. It is possible that in the beginning he did this
simply because 1/2 lies between 0 and 1, which are the generally accepted symbols
of falsehood and truth, but later on this choice turned out to be very fortunate, since
it made the generalization of his three-valued logic to an n-valued or infinite-valued
logic almost straightforward.

Łukasiewicz’s basic idea was to supplement two-valued logic with a third truth
value in such a way that the three-valued logic obtained would deviate least from
ordinary logic. He did this by adopting the following truth table for implication:
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Table 3.1 Truth values of
implication p → q (p
implies q or if p then q) in
Łukasiewicz’s three-valued
logic

→ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

and by assuming that the following formulae, which are in fact tautologies in two-
valued logic, define, respectively, negation, disjunction, conjunction, and equiva-
lence2:

¬p
de f= p → 0 (3.1)

(not p means the same as p implies falsehood)

disjunction : p ∨ q
def= (p → q) → q (3.2)

(p or q means the same as (p implies q) implies q)

conjunction : p ∧ q
def= ¬(¬p ∨ ¬q) (3.3)

(p and q means the same as not (not p or not q))

equivalence : p ≡ q
de f= (p → q) ∧ (q → p) (3.4)

(p and q are equivalent means the same as p implies q and q implies p)

It can easily be checked that these definitions together with Table3.1 yield the
following truth tables for negation, disjunction, conjunction, and equivalence in the
Łukasiewicz three-valued logic:

Table 3.2 Truth values of
negation ¬p (not p)

p ¬p

0 1
1
2

1
2

1 0

2Łukasiewicz did not consider three-valued equivalence in [4]. In 1922 he did so for the first time
in the realm of many-valued logics [8] but the formula (3.4) is a standard one in two-valued logic
and it was often used in many of Łukasiewicz’s papers published both before and after 1920.



18 3 A Brief Survey of Many-Valued Logics

Table 3.3 Truth values of
disjunction p ∨ q (p or q)

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

Table 3.4 Truth values of
conjunction p ∧ q (p and q)

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

Table 3.5 Truth values of
equivalence p ≡ q (p is
equivalent to q or p if and
only if q)

≡ 0 1
2 1

0 1 1
2 0

1
2

1
2 1 1

2

1 0 1
2 1

When the first break-through was made, further generalization to n-valued logics
and infinite-valued logics was not so difficult and Łukasiewicz actually did this soon
afterwards [8, 9]. Of course except for the case of n-valued logics with n being a
relatively small number, truth values of logical connectives cannot be presented in
the form of tables. Fortunately, Łukasiewicz found algebraic expressions, the same
for all systems of many-valued logics (both finite and infinite-valued), which yield
truth values of compound propositions as functions of their constituents, i.e. all
Łukasiewicz’s many-valued logics are truth-functional. The basic logical functor for
Łukasiewicz was implication and the following expression enables the truth value of
implication τ (p → q) to be calculated when the truth values τ (p) and τ (q) of the
antecedent p and the consequent q are known [8, 9]:

τ (p → q) = min[1 − τ (p) + τ (q), 1]. (3.5)

It can be easily checked that this formula applied to definitions (3.1)–(3.4) yields the
following formulae for truth values of the remaining logical connectives:

τ (¬p) = 1 − τ (p) (3.6)

τ (p ∨ q) = max[τ (p), τ (q)] (3.7)

τ (p ∧ q) = min[τ (p), τ (q)] (3.8)

τ (p ≡ q) = 1 − |τ (p) − τ (q)|. (3.9)
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Łukasiewicz assumed that the set of truth values of an n-valued logic consists of all
fractions of the form k

n−1 with 0 ≤ k ≤ n − 1. It is straightforward to check that the
formulae (3.6)–(3.9) yield Tables 3.1, 3.2, 3.3, 3.4 and 3.5 for n = 3.

Łukasiewicz mentioned in [8] that “...0 is interpreted as falsehood, 1 as truth, and
the other numbers in the interval 0–1 as the degrees of probability corresponding
to various possibilities...”. Therefore, it is clear that at least in the year 1922 he still
maintained his idea, expressed for the first time in the year 1913 [3], of interpreting
non-classical truth values as degrees of probability.

In contrast to Jan Łukasiewicz, the second founding father of the modern theory
of many-valued logics, Emil Leon Post, does not seem to be very much concerned
with the interpretation of non-classical truth values. His investigations were not so
much founded on philosophical considerations but were rather of a formal algebraic
nature. Loosely speaking we can say that he studied algebraic aspects of n-valued
logics without bothering to express them linguistically and in this respect his papers
[5, 10] are closer in their style to modern treatises on many-valued logics (see, e.g.
[11]) than contemporary papers by Łukasiewicz.

Post based his n-valued propositional calculi on the linearly ordered set of truth
values {t1, t2, ...tn} where the extreme elements express “full truth” and “full false-
hood” andhe followedWhitehead andRussel’sPrincipia Mathematica [12] in choos-
ing negation and disjunction as basic connectives. However, although his disjunction
was the same as that of Łukasiewicz, i.e. its truth value was the greater of the truth
values of its constituents, Post’s basic negation, which could be called cyclic was
quite different (Table 3.6):

Table 3.6 Truth values of
Post’s “cyclic” negation

p ¬p

t1 t2
t2 t3
.
.
.

.

.

.

tn t1

With negation defined in this way,3 if other connectives (conjunction, implication,
and equivalence) are defined with the aid of tautologies taken from two-valued logic,
then they exhibit rather unexpected and counterintuitive features. In spite of this
fact, in modern times Post logics find their application in the study of electronic
networks and in Computer Science [13, 14]. It should also be mentioned that due
to this particular negation, the n-valued propositional calculi of Post, in contrast to
those of Łukasiewicz, are functionally complete: any conceivable connective can
be defined by basic connectives of negation and disjunction. Of course no intuitive
interpretation can be given to the vast majority of connectives obtained in such a
way.

3Besides this “cyclic” negation Post also considered the other negation, identical to that of
Łukasiewicz. However, it seems that he treated “cyclic” negation as more important.
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After the first breakthrough made by Łukasiewicz and Post many other systems
of three-valued and n-valued propositional calculi were proposed. The three-valued
calculi of Kleene [15, 16], Bochvar [17], and Finn [18] should be mentioned here,
which were motivated by epistemological considerations concerning lack of mean-
ing of some statements, and also a similarly motivated group of papers dealing with
so-called nonsense-logics [19–22], attempts at describing intuitionistic propositional
calculus in terms of many-valued logics [23, 24], or papers motivated by considera-
tions concerning the peculiarities of quantum physics [25–32]. The mathematically
experienced reader can find a detailed survey of most of the above-mentioned three-
valued logics and some n-valued logics [33, 34] in Chaps. 3 and 4 of a book [11]
by Bolc and Borowik. Some examples of many-valued logics motivated by physical
considerations are described in Chap.8 of Jammer’s book [35].

It should bementioned that Łukasiewicz’smany-valued logic, endowedwith nega-
tion (3.1), (3.6), disjunction (3.2), (3.7), and conjunction (3.3), (3.8) was criticized
by Gonseth [36] in 1938 since it satisfies neither the law of the excluded middle

τ (p ∨ ¬p) = 1 (3.10)

(it is true that p or not p)

nor the law of contradiction

τ (p ∧ ¬p) = 0 (3.11)

(it is false that p and not p).

In fact, neither of these formulae is satisfied for τ (p) �= 0, 1, as, for example, they
both assume truth value 1

2 for τ (p) = 1
2 . Most probably Gonseth did not know Polish

so he could not have read the paper [37] already published by Zawirski in 1934,4 in
which Zawirski noticed that if we replace the right-hand side of the formula (3.2)
by which Łukasiewicz defined disjunction in [4] by the other (in two-valued logic
equivalent) expression: ¬p → q, then the disjunction obtained in this way:

p � q = ¬p → q

τ (p � q) = min[τ (p) + τ (q), 1] (3.12)

and the conjunction adjoint to it by de Morgan’s Law:

p 	 q = ¬(¬p � ¬q)

τ (p 	 q) = max[τ (p) + τ (q) − 1, 0] (3.13)

satisfy both the law of the excluded middle:

4The same idea was published in English by Orrin Frink Jr. in 1938 in [38].
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τ (p � ¬p) = min[τ (p) + 1 − τ (p), 1] = 1 (3.14)

and the law of contradiction:

τ (p 	 ¬p) = max[τ (p) + 1 − τ (p) − 1, 0] = 0. (3.15)

Therefore, Gonseth’s critique cannot be applied to Łukasiewicz’s many-valued logic
endowed with his original implication (3.5), negation (3.1), (3.6), and the Zawirski-
Frink disjunction (3.12) and conjunction (3.13). As we shall see in what follows, this
set of connectives also seems to be better suited to the description of the behaviour of
quantum physical systems than the set of connectives originally defined and studied
by Łukasiewicz.
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Chapter 4
Fuzzy Sets and Many-Valued Logics

4.1 Rudiments of the Fuzzy Set Theory

Classical, two-valued logic is a basis of traditional mathematics and, in particular,
of the traditional set theory. Although well-elaborated systems of axioms for the
classical set theory do exist, for all practical purposes it is enough to distinguish a set
that we are interested in by a predicate which, according to two-valued logic, enable
all the objects under consideration to be unambiguously divided into two disjoint
classes: objects that belong to a set and objects that do not belong to a set and form
its complement. For example, let U be a set consisting of speakers at the Conference
on Foundations of Quantum Mechanics. This predicate is precise enough to define
this set as soon as the Conference is finished. All propositions of the form: x belongs
to the set U where x denotes a name of an individual person are, as soon as the
Conference is finished, either true or false, i.e. they belong to the domain of classical
two-valued logic.

However, although every traditional set is defined by a “sharp” predicate, not every
predicate is good enough to define a traditional set in an unambiguous way. Let us
try to distinguish a subset A of the above-mentioned set of speakers U consisting of
speakers whose talks were interesting. Even ifwe choose only one umpire in order not
to deal with various opinions we are likely to get, besides “sharp” judgements of the
form: “the talk of Dr. X was not interesting”, “the talk of Dr. Y was interesting” also
a lot of statements of the form: “the talk of ... was ...a little bit/only partially/not so
much/quite/in most of its parts/almost... interesting”. Therefore, we see that besides
the speakers who, like Dr. X, surely do not belong to the set A and who, like Dr. Y,
surely belong to it, bothmembership and non-membership of other speakers to the set
A is doubtful. However, it would also not be good to group all these other speakers
into one category since from the various judgements of our umpire we infer that
different talks were interesting to him to a different extent. The best solution would
be to evaluate numerically the degrees to which the talks of the various speakers were
interesting and to say that the “degrees of membership” of the various speakers to
the set A are proportional to these numbers.

© The Author(s) 2015
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This is exactly the idea of a fuzzy set: If A is a fuzzy subset of the universe of
discourse U (in our case the set U consists of all the speakers), then some elements
of U surely belong to A, some surely do not belong to it, but all the intermediate
cases of “partial membership” are also allowed. Moreover, membership is “graded”:
according to the original idea of Zadeh [1], who is generally recognized as a founding
father of the fuzzy set theory,1 membership of an element x to a fuzzy set A, denoted
μA(x) or simply A(x), can vary from 0 (full non-membership) to 1 (full membership)
i.e., it can assume all values in the interval [0, 1]. Therefore, a membership function
μA : x �→ μA(x) ∈ [0, 1] completely characterizes the fuzzy set A and it is an
obvious generalization of a characteristic function χA(x) of a traditional set:

χA(x) =
{
0 for x /∈ A
1 for x ∈ A

(4.1)

Fuzzy subsets of a plane can be easily visualized as areas which, contrary to
traditional sets (usually called crisp sets in the fuzzy set theory), have no sharp
boundaries and vanish gradually. They are smeared, blurred or simply fuzzy.

Our everyday language provides uswith numerous examples of “non-sharp” pred-
icates which can define only non-crisp sets, e.g. young (man), ripe (apple), old (paint-
ing), fast (car), famous (artist), etc. In all these cases we can easily distinguish ele-
mentswhich certainly belong to a set of objects defined by a given predicate, elements
which surely do not belong to it, and elements whose membership is more or less
doubtful. I would, in fact, venture to say that in everyday communication “sharp”
predicates which define crisp sets are the exception rather than the rule. Of course,
in some cases it is possible to draw a borderline in a more or less arbitrary way
to recover sharp discrimination between members and non-members of a set. For
example we could state that a car x1 which can go faster than 150 km/h belongs to
the set of fast cars which, according to two-valued logic implies that a car x2 which
can go at the most at 149,999 km/h is, by the very definition, not fast, so it does not
belong to the set of fast cars. However, we feel that the car x2 “almost belongs” to
the set of fast cars and should not be treated in the same way as a car x3 which can
go at the most at 50 km/h. It is more natural to state that the grade of membership of
the car x2 to the set of fast cars is very close to 1 while the grade of membership of
the car x3 to this set is close to 0. Thus, the idea of representing the collection of fast
cars in the form of a fuzzy set is very appealing, although it should be mentioned that
in general it is not at all obvious precisely what a membership function of a specific
fuzzy set should look like.2

As soon as membership functions of fuzzy sets are established, these sets are
characterized to the full extent and we can define on them all relations and operations

1It seems that Chang [2] and Klaua [3] elaborated similar ideas independently of [1] and published
them even slightly before [1]. It is for historians of science to explain why their papers, contrary to
[1] are almost neglected.
2This observation gave rise to the notion of probabilistic fuzzy sets introduced by Hirota [4], whose
membership functions are themselves “fuzzy”. Of course this procedure can be continued, but
objects obtained in this way are less and less convenient to deal with.
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known from traditional set theory.3 This is much to be expected since classical
sets are actually special cases of fuzzy sets: they are fuzzy sets whose membership
functions assume only two values: 0 and 1, i.e., thesemembership functions are in fact
characteristic functions (4.1), and because all set-theoretic relations and operations
on classical sets can be expressed in terms of their characteristic functions.

Definitions of the basic relations and operations on fuzzy sets were put forward
early on by Zadeh in his historic paper [1] and these are still the most frequently used
in all contributions to and applications of the fuzzy set theory. We shall see in what
follows that Zadeh’s intuitive choice was so natural because these operations follow
from the connectives of Łukasiewicz’s many-valued logic in exactly the same way
as operations on classical sets follow from the connectives of classical logic.

Zadeh’s basic relations and operations are defined with the aid of membership
functions as follows (we assume, as is usually done in the fuzzy set theory, that all
considered fuzzy sets are in fact fuzzy subsets of a fixed universe of discourse U ):

Equality of fuzzy sets: A = B iff for all elements x in the universe U

μA(x) = μB(x). (4.2)

Inclusion of fuzzy sets: A ⊆ B iff for all elements x in the universe U

μA(x) ≤ μB(x). (4.3)

Complement (negation) of a fuzzy set: A′ is a complement of A iff for all elements
x in the universe U

μA′(x) = 1 − μA(x). (4.4)

Union (sum) of fuzzy sets: A ∪ B is a union of A and B iff for all elements x in
the universe U

μA∪B(x) = max[μA(x),μB(x)]. (4.5)

Intersection (product) of fuzzy sets: A ∩ B is an intersection of A and B iff for
all elements x of the universe U

μA∩B(x) = min[μA(x),μB(x)]. (4.6)

The fuzzy set theory is by no means only a mathematical game. Although in
the beginning it was treated with some reserve by traditionally oriented “crisp”
mathematicians, it quickly found numerous practical applications which vary from
earthquake forecasting, computer medical diagnoses, decision making and pat-
tern recognition to the production of control systems for the underground and
more efficient vacuum cleaners. Moreover, it seems to be a very natural tool for
all “soft” sciences which deal with vagueness or imprecision caused either, as in

3There are also operations which can be defined on fuzzy sets that have no counterparts in traditional
set theory, e.g. the operation of “sharpening” a set which makes it “less fuzzy”.
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meteorology, by an excess of data or, as in economics, sociology, psychology, etc.,
by the human factor. In fact, the “applicational” aspect of fuzzy sets is maybe even
better known than their theoretical aspects which still seem to be undervalued by
“crisp” mathematicians.

4.2 Fuzzy Sets and Infinite-Valued Łukasiewicz Logic

In order to explain why the obvious links between fuzzy sets and many-valued
Łukasiewicz logics were not studied4 during the whole of the first decade of the
rapid development of the fuzzy set theory, one should take into account two possible
reasons.On the one handLotfiZadeh andhis followers seemed to be interestedmostly
in applications of the newly established theory and were not so much occupied with
clarification of its foundations. On the other hand “pure” mathematicians of that
time did not pay much attention to a theory which was probably seen by them as
too simple in comparison with the sophisticated problems emerging on the very
frontiers of contemporary “crisp” mathematics. In fact, the relation of classical logic
to classical set theory, in particular definitions of set-theoretic operations in terms
of the connectives of classical logic, are taught at the beginning of the secondary
school. They remain the same when classical logic is replaced by infinite-valued
Łukasiewicz logic and classical sets are replaced by fuzzy sets, but this observation
was published by Giles [5] 10 years after the successful launching of the idea of
fuzzy sets by Zadeh in 1965.

Let us recall the relations between propositions and sets known from school and
see how theyworkwhen classical logic and classical sets are replaced byŁukasiewicz
infinite-valued logic and fuzzy sets.

The notion of a set is adopted at school as a primitive notion and it is tacitly
assumed that we know a set when we know all its elements. Therefore, any set A can
be described as a collection of objects whose names turn a propositional function “x
belongs to A” (“x ∈ A”) into a true proposition. Symbolically:

A = {x : τ (“x ∈ A”) = 1} (4.7)

Because of the equality in the bracket the set A defined by the formula (4.7) is
unavoidably crisp even if we replace classical two-valued logic by infinite-valued
logic. However, if we rewrite this formula in the following form (in two-valued logic
equivalent):

A = {x : τ (“x ∈ A”) 
= 0} (4.8)

and replace the classical two-valued logic by an infinite-valued logic, then, since in
the infinite-valued logic a truth value of a non-false proposition can assume, besides
1, any value between 0 and 1, the set A turns out to be a fuzzy set with a membership

4Except almost neglected papers [2, 3] mentioned in footnote 1 of this chapter.
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function defined by the truth values of propositions of the form “x belongs to A”:

μA(x) = τ (“x ∈ A”). (4.9)

(the degree of membership of an object x to the fuzzy set A is equal to the truth value
of the proposition “x belongs to A”)

This equality allows well-known secondary school definitions of the complement,
union, and intersection of classical sets to be used together with Łukasiewicz’s for-
mulas for truth values of negation (3.6), disjunction (3.7), and conjunction (3.8) to
justify Zadeh’s intuitive choice of basic operations on fuzzy sets (4.4), (4.5), and
(4.6):

Membership function of a complement (negation) of a fuzzy set:

μA′(x) = τ (“x ∈ A′”) = τ (“x /∈ A”) = τ (¬“x ∈ A”)

= 1 − τ (“x ∈ A”) = 1 − μA(x). (4.10)

Membership function of a union (sum) of fuzzy sets:

μA∪B(x) = τ (“x ∈ A” ∨ “x ∈ B”)

= max[τ (“x ∈ A”), τ (“x ∈ B”)]
= max[μA(x),μB(x)]. (4.11)

Membership function of an intersection (product) of fuzzy sets:

μA∩B(x) = τ (“x ∈ A” ∧ “x ∈ B”)

= min[τ (“x ∈ A”), τ (“x ∈ B”)]
= min[μA(x),μB(x)]. (4.12)

However, as was mentioned at the end of Chap.2, the original Łukasiewicz disjunc-
tion and conjunction are not the only conceivable connectives of this type. Therefore,
the Zawirski-Frink disjunction (3.12) and conjunction (3.13) placed inside (4.11) and
(4.12) yield other operations of union and intersection of fuzzy sets, called bold union
and intersection by Giles [5] who was the first to study them within the fuzzy set the-
ory (other names: Giles, truncated, bounded, arithmetic, Łukasiewicz operations)5:

5It is clear that Giles [5] was not aware of Zawirski’s 1934 paper [6] where these operations appeared
for the first time (in the domain of a many-valued logic), and he was also, most probably, not aware
of Frink’s 1938 paper [7]. It also seems that these operations were rediscovered many times by
various authors which explains the multiplicity of their names. Although these operations did not
appear explicitly in any Łukasiewicz paper, the name Łukasiewicz operations seems to be the most
popular nowadays and will be used throughout this paper.
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μAB(x) = τ (“x ∈ A”  “x ∈ B”)

= min[τ (“x ∈ A”) + τ (“x ∈ B”), 1]
= min[μA(x) + μB(x), 1] (4.13)

μA�B(x) = τ (“x ∈ A” � “x ∈ B”)

= max[τ (“x ∈ A”) + τ (“x ∈ B”) − 1, 0]
= max[μA(x) + μB(x) − 1, 0] (4.14)

It is obvious that other disjunction-like and conjunction-like connectives of
infinite-valued logic6 define in the same way other operations of fuzzy set union
and intersection and vice versa. All operations on fuzzy sets interpretable as fuzzy
set union and intersection7 yield disjunction-like and conjunction-like connectives
of the infinite-valued Łukasiewicz logic.
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Chapter 5
Many-Valued Logics in Quantum Mechanics

In the years 1925–1926 the development of quantum physics itself experienced a
“quantum jump”: Under the influential works of Heisenberg, Schrödinger, Born,
Jordan and Dirac [1–6] physicists abandoned the so-called “older quantum theory”,
which was merely an amalgamate of ideas and models taken from classical physics
with the addition of ad hoc “quantum conditions”, and developed quantum mechan-
ics as an internally consistent, although mathematically highly sophisticated theory
which, at least in its non-relativistic part, persists without drastic changes to the
present. However, some implications of the new theory were so bizarre that there
were scientists who claimed that quantum theory could not be comprehended on the
grounds of classical two-valued logic.

The first to express such claimswas a Polish logician, Zygmunt Zawirski, whowas
looking for possible fields of application for Łukasiewicz many-valued logic. In the
papers published in 1931 [7] and in 1932 [8] Zawirski argued that the equivalence of
“complementary theories”, e.g.wave and particle pictures in the description ofmicro-
objects, is possible only on the basis of (at least) three-valued logic, since in two-
valued logic a statement such as “light is a wave and light consists of particles” is a
statementwhich is a conjunction of two propositionswhich cannot simultaneously be
true. Therefore, according to the laws of classical two-valued logic such conjunction
is necessarily a false proposition.

According to Zawirski, complementarity, typical of quantum mechanics, can be
comprehended only on the basis of (at least) three-valued logic when we ascribe
to two mutually exclusive theories a third truth value interpreted as “possibility” or
“equal probability”. Indeed, if a truth value of two propositions p and q equals 1

2 ,
then according to formula (3.8)

τ (p ∧ q) = min

[
1

2
,
1

2

]
= 1

2
(5.1)

so the conjunction of two “possible” statements is again “possible”.
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Zawirski’s papers: [7] published in Polish in a local journal, [8] published in
French in a journal relatively little read by physicists and [9] published again in
Polish, received little attention.1

More fortunate in propagating his ideas was the American astrophysicist Fritz
Zwicky. His paper [10], published in the Physical Review, in which he gave
physical arguments against the law of the excluded middle and in favour of the
“many-valuedness of scientific truth”, was much more widely discussed (see [11],
pp. 345–346).

The best-known attempts at basing quantum mechanics on three-valued log-
ics were elaborated in the forties and early fifties of the XX century by Paulette
Destouches-Février [12, 13] and Hans Reichenbach [14–17].

Destouches-Février was undoubtedly influenced by the epistemological papers
of a group of contemporary philosophers, G. Bachelard, F. Gonseth, P. Hertz and
L. Rougier, for whom logic was an empirical science which may be changed when
new experimental results are obtained. Besides two ordinary truth values (true and
false) ascribed to propositionswhich,when checked experimentally, yield sometimes
true and sometimes false judgements, she introduced a third truth value absolutely
false. This third truth value she ascribed to propositions which can never, by their
very nature, be confirmed experimentally, for example: “the energy E has value E0”
when E0 does not belong to the energy spectrum. She used two types of conjunction
of propositions about quantum systems, depending upon whether the propositions
were associated with commuting or non-commuting observables. In the first case her
conjunction coincided with the conjunction that Łukasiewicz had used in his three-
valued logic ((3.3), Table3.4 in Chap.3). In the second case she argued on the basis of
Heisenberg uncertainty relations that a conjunction of propositions associated with
non-commuting observables is always absolutely false.

The best-elaborated and most widely discussed attempt at explaining quantum
phenomena on the basis of three-valued logic was published by Hans Reichenbach
in his book Philosophic Foundations of Quantum Mechanics [14]. He distinguished
between phenomena = microphysical events connected with macroscopic events by
“rather short casual chains” and interphenomena = interpolations between phenom-
ena without direct manifestation in the form of a macroscopic effect. To illustrate this
division, let us consider a typical two-slit experiment which, according to Feynman’s
well-known words “has in it the heart of quantum mechanics” [18]: Emission of a
quantum object by a source and its absorption on a screen are phenomena, while
its “path” between the source and the screen, i.e. everything that adherents of the
orthodox Copenhagen interpretation forbid even to consider, belongs to the domain
of interphenomena. Reichenbach argued that if someone wants to go beyond the

1Even in Poland: When in 1991 in the Polish National Library in Warsaw I had in my hands a copy
of Zawirski’s paper [9] it turned out that the pages of a booklet were still not cut apart, i.e. most
probably no one had read this copy during the whole 60years! A tribute should be paid to Max
Jammer, who mentions Zawirski’s papers in his famous book [11] on the philosophy of quantum
mechanics. The interested reader will find in Chap.8 of this book a more detailed historical survey
of the applications of many-valued logics in the foundations of quantum mechanics up to the early
seventies of the XX century.
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Copenhagen interpretation, i.e. if he wants to describe interphenomena as well as
phenomena, believing that they are governed by the same laws of nature, then appli-
cation of two-valued logic inevitably leads to causal anomalies which vanish when
bivalent logic is replaced by three-valued logic. According to Reichenbach the third
truth value indeterminate should be treated ontologically and should not be confused
with the macroscopic epistemological unknown.

Logical operations in Reichenbach’s three-valued logic were defined indepen-
dently of each other. He considered three types of negation, three types of implica-
tion, two types of equivalence, conjunction, and disjunction, out of which one type of
negation (termed by Reichenbach diametrical), implication, and equivalence (called
standard), conjunction, and disjunction, were identical with those of Łukasiewicz
(3.1)–(3.4).

Reichenbach’s ideaswere pursued after his death byPutnam [19] and evokedmuch
wider discussion than any other attempt at utilizing many-valued logic in the foun-
dations of quantum mechanics, but critical voices prevailed (see [11], pp. 368–375).
The same was true of the attitude of physicists to von Weizsäcker’s “complementar-
ity logic” [20] with complex truth values obtained directly from the mathematical
formalism of Hilbert-space quantum mechanics.

As Max Jammer stated in his book [11], using the words quoted in the Intro-
duction as the anti-motto to this book, von Weizsäcker’s papers contained the last
attempts to apply many-valued logics to foundations of quantummechanics until the
early seventies of the XX century. This does not mean that interest in applying non-
classical logics to the foundations of quantum mechanics vanished completely. On
the contrary, in the seventies and eighties more than thousand papers were published
as well as nearly twenty books, and several international conferences on “quantum
logics and related structures” were held (see the extensive Pavičić bibliography [21]
published in 1992 that contains more than 1500 entries). Although no systematic bib-
liographical research was performed later, it seems that up to now this number could
have even tripled. However, after von Weizsäcker’s work the interest of researchers
definitely shifted from three-valued or many-valued logics to the non-distributive
but two-valued logic of the type proposed by Birkhoff and von Neumann as early as
1936 [22].

In the author’s opinion the attempts to found quantummechanics on any version of
three-valued logics were bound to fail also because three-valued logics are not “rich
enough in truth values” and, therefore, are not “flexible” enough. One should not
expect to be able to describe by these means the whole variety of quantum phenom-
ena, especially when truth values are supposed to be connected with the numerical
results of experiments, if there is only one truth value (besides the classical 0 and 1)
available. On the other hand, von Weizsäcker’s complex-valued “complementarity
logic” seems to be too different from anything that could be intuitively accepted as
“logic”. Nevertheless, the possibility of describing quantum phenomena by means
of many-valued logic still remains. The aim of the next two chapters is to show that
the “orthodox” Birkhoff–von Neumann quantum logic can be treated equivalently
as a special kind of infinite-valued Łukasiewicz logic.
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Chapter 6
Birkhoff-von Neumann Quantum Logic

According to the historic Birkhoff and von Neumann paper [1] a family of
experimental propositions pertaining to a quantum system should possess an alge-
braic structure characteristic of the family of all linear subspaces of a
(finite-dimensional) Hilbert space, i.e. it should be an orthocomplemented modu-
lar lattice. Since in the case of infinite-dimensional Hilbert spaces lattices of their
closed linear subspaces are not modular, the requirement of modularity was soon
replaced by Husimi [2] by a more general orthomodularity condition, satisfied also
in this case. In some versions of the logico-algebraic approach to foundations of
quantum mechanics the algebraic model of a family of experimental propositions
about a physical system is assumed to be a slightly more general orthomodular par-
tially ordered set instead of an orthomodular lattice. This assumption is adopted
also throughout this book, although it should be mentioned that by making it we
move a little further from the very archetype, namely an orthomodular lattice of all
closed linear subspaces of a (possibly infinite-dimensional) separable Hilbert space
or, equivalently, a lattice of orthogonal projectors onto these subspaces.

We shall quote now the full definition of the basic algebraic structure we shall deal
with. This object, believed to be an algebraic representation of a set of experimental
propositions pertaining to a physical system is traditionally called quantum logic. In
our opinion this name is somewhat unfortunate since it identifies the “logic of exper-
imentally verifiable propositions” with its algebraic representation. Moreover, since
Boolean algebras, which are algebraic representations of sets of propositions about
classical physical systems, also belong to this class, even the very word “quantum”
as understood in “quantum logic” is misleading. Therefore, the name “orthomod-
ular algebra” coined by Burmeister and Ma̧czyński [3] seems to be far preferable,
also because it corresponds very well to other “algebras” (Boolean algebras, orthoal-
gebras, effect algebras, generalized MV algebras, etc.) studied within the modern
theory of quantum structures. Unfortunately, this term is not yet sufficiently popular,
so throughout this book we shall use the more popular traditional name.
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6.1 The Traditional Algebraic Model

Following the well-established tradition (cf. for example, [4, 5]), by a quantum logic
wemean an orthocomplemented σ -orthocomplete orthomodular poset, i.e. a partially
ordered set L which contains the smallest element O and the greatest element I , in
which the orthocomplementation map ⊥: L → L satisfying the conditions (a)–(c)
exists:

(a) (a⊥)⊥ = a.
(b) If a ≤ b, then b⊥ ≤ a⊥.
(c) The greatest lower bound (meet) a ∧ a⊥ and the least upper bound (join) a ∨ a⊥

with respect to the given partial order exist in L and a ∧ a⊥ = O , a ∨ a⊥ = I .

Moreover, the σ -orthocompleteness condition holds:

(d) If ai ≤ a⊥
j for i �= j (such elements are called orthogonal and are usually

denoted ai ⊥ a j ), then the join ∨i ai exists in L ,

and so does the orthomodular identity:

(e) If a ≤ b, then b = a ∨ (a⊥ ∧ b) = a ∨ (a ∨ b⊥)⊥.
Elements a, b ∈ L are called compatible iff there exist in L pairwise orthogonal

elements a1, b1,c such that a = a1 ∨ c and b = b1 ∨ c.
Probability measure on a quantum logic L is a mapping s : L → [0, 1] such that

(i) s(I ) = 1,
(ii) s(∨i ai ) = �i s(ai ) for any sequence of pairwise orthogonal elements of L .

If elements of a quantum logic L represent experimentally verifiable propositions
about a physical system, then probability measures defined on L represent states of
a physical system and, therefore, are often themselves called states on L . According
to the standard interpretation a number s(a) ∈ [0, 1] is interpreted as a probability
of obtaining the result “yes” in an experiment designed to check a proposition rep-
resented by a when a physical system is in a state represented by s. However, as
we shall see in what follows, this number can also be interpreted as a truth value
of a many-valued proposition about results of not-yet-performed experiments: “an
experiment designed to check a property represented by a will show that a system
in a state represented by s actually has this property” or simply a truth value of a
many-valued proposition “a physical system in a state represented bys has a property
represented by a”.

A set of probability measures (states) S on a quantum logic L is called ordering
(full, order determining) iff s(a) ≤ s(b) for all s ∈ S implies a ≤ b. Let us note
that the only way in which one can establish experimentally the partial order relation
between various propositions is to conduct experiments on a system prepared in
various states, which means that only quantum logics allowing for ordering sets
of probability measures can be endowed with a physical interpretation. Therefore,
throughout the rest of the book we shall consider only quantum logics with ordering
sets of probability measures.
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6.2 Ma̧czyński’s Functional Model

In 1973, 37years after the introduction of the very notion of quantum logic by
Birkhoff and von Neumann [1], Ma̧czyński published [6] a theorem which 20years
later turned out to be a milestone in building fuzzy set or, equivalently, many-valued
models of B-vN quantum logics endowed with ordering sets of probability measures.
This theorem, expressed byMa̧czyński in [7] in an equivalent form that is better suited
for our purposes, appears as follows:

Theorem 1 Let S be a non-empty set and let L be a set of mappings from S into
[0, 1] that has the following three properties:

(i) 0 (the null function) belongs to L
(ii) a ∈ L implies 1 − a ∈ L

(iii) for any (finite or countable) sequence a1, a2, ..., ai ∈ L such that ai +a j ≤ 1
for i �= j (such functions were called in [6] pairwise orthogonal), we have
a1 + a2 + ... ∈ L .

Then L is a quantum logic with respect to the natural partial order of real functions,
with orthocomplementation a⊥ = 1 − a. Every point u ∈ S induces a probability
measure mu on (L ,≤,⊥ ), where mu(a) = a(u) for all a ∈ L, and the family of
measures {mu : u ∈ S} is ordering.

Conversely, if (L ,≤,⊥ ) is a quantum logic with an ordering set S of probability
measures, then each a ∈ L induces a function a : S → [0, 1] where a(m) = m(a)

for all m ∈ S. The set of all such functions L = {a : a ∈ L} has properties (i)–(iii)
and (L,≤,⊥ ) is isomorphic to (L ,≤,⊥ ).

Ma̧czyński’s functional representation theorem provides a very useful tool for
studying quantum logics since it allows abstract algebraic and order-theoretic notions
that appear in the original definition of a quantum logic to be expressed in a more
convenient language of real functions.Moreover, since any [0, 1]-valued function can
be thought of as a membership function of a fuzzy set, Ma̧czyński’s theorem allows
any B-vN quantum logic endowed with an ordering set of probability measures to
be represented in the form of a family of fuzzy sets, which further enables it to be
treated as a kind of the infinite-valued Łukasiewicz logic. Indeed, if we think of
the Ma̧czyński functionals as membership functions of fuzzy sets, then condition (i)
means that the empty set belongs to L , while condition (ii) means that if a fuzzy
set belongs to L , then its standard fuzzy complement (4.4) also belongs to L . Only
the third of Ma̧czyński’s conditions cannot be directly expressed in terms of fuzzy
set notions. However, we shall show in the next section that this obstacle can be
overcome at the expense of adding one more, very natural, condition.
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6.3 The General Fuzzy Set Model

The formal similarity of some operations on fuzzy sets to order-theoretic opera-
tions on quantum logics yielded in the late eighties of the XX century the idea of
constructing fuzzy set models of B-vN quantum logics [8]. It was obvious from the
very beginning that orthocomplementation should bemodelled by the standard fuzzy
set complementation (4.4) which, however, excludes the possibility of representing
meets and joins by Zadeh’s unions (4.5) and intersections (4.6) [9]. Indeed, the for-
mal fuzzy set counterparts of the excluded middle law and the law of contradiction
that are assumed in the point (c) of the definition of the B-vN quantum logic:

A ∩ A′ = ∅ (6.1)

A ∪ A′ = U (6.2)

are not satisfied by any genuine fuzzy (i.e., non-crisp) set, but they are satisfied if we
replace Zadeh’s operations (4.5), (4.6) by Łukasiewicz’s operations (4.13), (4.14).
Also the fact that the Zadeh operations are distributive does not allow for their use
in order to build fuzzy set models of generally non-distributive quantum logics.

The attempts at building fuzzy set models of quantum logics attempted by the
author since 1987 were in the beginning flawed by the necessity of using, together
with genuine fuzzy set operations (4.4), (4.13), and (4.14), pointwise algebraic sums
of membership functions which are alien to the fuzzy set theory since they may yield
outcomes bigger than 1. This drawbackwas overcome in 1994 [10] at the expense of a
slight modification of the third of the original Ma̧czyński [6, 7] conditions described
in the previous section, and the addition of the natural requirement that an empty set
is the only fuzzy set that is (weakly) disjoint with itself.

Ma̧czyński’s functional representation theorem quoted in the previous section,
expressed in the language of fuzzy sets, and combined with the author’s modification
yield the following theorem proved in [10]:

Theorem 2 Any quantum logic L with an ordering set of probability measures S
can be isomorphically represented in the form of a family L(S) of fuzzy subsets of S
satisfying the following conditions:

(a) L(S) contains the empty set ∅, i.e. such set that μ∅(s) = 0 for all s ∈ S.
(b) L(S) is closed with respect to the standard fuzzy set complementation (4.4), i.e.,

if A ∈ L(S), then A′ ∈ L(S).
(c) L(S) is closed with respect to the countable Łukasiewicz unions (4.13) of pair-

wiseweakly disjoint [11] sets, i.e., such sets that their Łukasiewicz’s intersection
is the empty set. In symbols: if Ai  A j = ∅ for i �= j , then �i Ai ∈ L(S).

(d) The empty set ∅ is the only set in L(S) that is weakly disjoint with itself, i.e., for
any A ∈ L(S), if A  A = ∅, then A = ∅.

Conversely, any family of fuzzy subsets of an arbitrary universe U satisfying con-
ditions (a)–(d) is a quantum logic partially ordered by the inclusion of fuzzy sets (4.3),
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with the fuzzy set complementation (4.4) as orthocomplementation, the orthogonal-
ity of the elements coinciding with their weak disjointness, and an ordering set of
probability measures generated by points of the universe U according to the formula

sx (A) = μA(x) for all x ∈ U . (6.3)

Following the widespread custom we shall, when no confusion arises, iden-
tify fuzzy sets with their membership functions and we shall write A, B, . . . or
A(x), B(x), ... instead of μA, μB, . . . or μA(x), μB(x), . . ..

Proof The proof is a modification of the original proof given in [10].
Because of Theorem1 it is enough to prove that theMa̧czyński conditions (i)–(iii),

when applied to membership functions of fuzzy subsets of S (or U), are equivalent
to conditions (a)–(d).

The equivalence of conditions (i) and (a), and conditions (ii) and (b) is obvious.
The implication (iii) ⇒ (c) is obvious as well, since in this case the membership
function of the Łukasiewicz union in (c) equals the pointwise sum of membership
functions of its constituents.

The fact that the condition (d) follows from (i)–(iii) was already proved by the
author in [9] (Theorem 3.2). Indeed, A  A = ∅ means that 2A ≤ 1, so A ≤ 1/2 ≤
1 − A = A′. Therefore, A ∧ A′ = A which, since by Theorem1 any family of
functions that satisfies (i)–(iii) is a quantum logic in which A′ = A⊥, means that
A = ∅.

In order to finish the proof it is enough to show that conditions (a)–(d) imply
(iii). First, let us notice that Giles’ weak disjointness of fuzzy sets: Ai  A j = ∅
is equivalent to Ma̧czyński’s pairwise orthogonality of their membership functions:
Ai + A j ≤ 1. It is obvious, that for any sequence of pairwise weakly disjoint fuzzy
sets, if

∑
i Ai ≤ 1, then

∑
i Ai = �i Ai ∈ L(S). Therefore, it is enough to show that

for any sequence of such fuzzy sets conditions (a)–(d) make
∑

i Ai > 1 impossible.
The proof of this fact will proceed by induction.

As has already beenmentioned, for n = 2, A1 A2 = ∅ is equivalent to A1+ A2 ≤
1 by the very definition of the Łukasiewicz product (4.14).

Let us assume that
∑n

i=1 Ai ≤ 1 for any sequence of pairwise weakly disjoint
sets of the length n. Let {Ai }n+1

i=1 be any sequence of pairwise weakly disjoint sets of
the length n + 1. By the induction hypothesis we can write down n + 1 inequalities:

A2 + A3 + A4 + . . . + An + An+1 ≤ 1
A1 + A3 + A4 + . . . + An + An+1 ≤ 1
A1 + A2 + A4 + . . . + An + An+1 ≤ 1

...

A1 + A2 + A3 + . . . + An−1 + An+1 ≤ 1
A1 + A2 + A3 + . . . + An−1 + An ≤ 1
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After summing them up and dividing by n we obtain

n+1∑
i=1

Ai ≤ n + 1

n
. (6.4)

Let us denote Bn = �n
i=1Ai = ∑n

i=1 Ai and Bn+1 = �n+1
i=1 Ai = Bn � An+1, and

calculate
(
B⊥

n+1 + An+1
)
(x). There are two possibilities:

1. If
∑n+1

i=1 Ai (x) = Bn(x) + An+1(x) > 1, then

(
B ′

n+1 + An+1
)
(x) = [

1 − (Bn � An+1) + An+1
]
(x)

= 1 − min
[
Bn(x) + An+1(x), 1

] + An+1(x)

= 1 − 1 + An+1(x) = An+1(x) ≤ 1.
(6.5)

2. If
∑n+1

i=1 Ai (x) = Bn(x) + An+1(x) ≤ 1, then
(
B ′

n+1 + An+1
)
(x) = 1 − min

[
Bn(x) + An+1(x), 1

] + An+1(x)

= 1 − Bn(x) ≤ 1.
(6.6)

We see that in both cases
(
B ′

n+1 + An+1
)
(x) ≤ 1. This means that B ′

n+1 
An+1 = ∅, so by the conditions (c) and (b) both B ′

n+1 � An+1, and
(
B ′

n+1 � An+1
)′

belong to the family of fuzzy sets distinguished by (a)–(d). Let us calculate now[(
B ′

n+1 � An+1
)′ + B ′

n

]
(x), considering the same two possibilities as before and

taking into account that in both cases

B ′
n+1 � An+1 = B ′

n+1 + An+1 (6.7)

so we can use (6.5) or (6.6), respectively.

1. If
∑n+1

i=1 Ai (x) > 1, then

[(
B ′

n+1 � An+1
)′ + B ′

n

]
(x) = A′

n+1(x) + B ′
n(x)

= 1 − An+1(x) + 1 − Bn(x)

= 2 − [
Bn (x) + An+1(x)

]
= 2 − ∑n+1

i=1 Ai (x) < 1.

(6.8)

2. If
∑n+1

i=1 Ai (x) ≤ 1, then

[(
B ′

n+1 � An+1
)′ + B ′

n

]
(x) = B ′′

n (x) + B ′
n(x) = Bn(x) + B ′

n(x) = 1. (6.9)
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Therefore, again in both cases
[(

B ′
n+1 � An+1

)′ + B ′
n

]
(x) ≤ 1, which means that(

B ′
n+1 � An+1

)′ � B ′
n belongs to the distinguished family of fuzzy sets. However,

combining (6.4) with (6.8) and (6.9), we obtain for any n ≥ 2 and any x

1

2
≤ 2 − n + 1

n
≤

[(
B ′

n+1 � An+1
)′ � B ′

n

]
(x) ≤ 1.

This means that for any x , C(x) =
[(

B ′
n+1 � An+1

)′ � B ′
n

]′
(x) ≤ 1

2 , so C  C = ∅
which, by (d) means that C = ∅. Now, if we assume that there exists x such that∑n+1

i=1 Ai (x) > 1, we have, according to (6.7) and (6.5)

[(
B ′

n+1 � An+1
)  Bn

]
(x) = max

[(
B ′

n+1 + An+1
)
(x) + Bn(x) − 1, 0

]
= max

[
An+1(x) + Bn(x) − 1, 0

]
= max

[∑n+1
i=1 Ai (x) − 1, 0

]

= ∑n+1
i=1 Ai (x) − 1 �= 0,

so C = (
B ′

n+1 � An+1
)  Bn �= ∅, contrary to (d).

Since for a countable sequence
∑

i Ai is a pointwise limit of finite sums, we infer
that for any sequence of pairwise weakly disjoint sets {Ai } the assumption that there
exists x such that

∑
i Ai (x) > 1 inevitably implies that the condition (d) cannot be

satisfied, which finishes the proof. �
Because of the second part of Theorem2, any family L(U) of fuzzy subsets of an

arbitrary universe U satisfying conditions (a)–(d) of Theorem2, i.e., such that

(a) ∅ ∈ L(U),

(b) if A ∈ L(U), then A′ ∈ L(U),

(c) if Ai  A j = ∅ for i �= j , then �i Ai ∈ L(U),

(d) if A  A = ∅, then A = ∅,
will be called a quantum logic of fuzzy sets or simply a fuzzy quantum logic. Of
course the second part of Theorem2 implies that any quantum logic of fuzzy sets
L(U) has an ordering set of probability measures generated by points of the universe
U according to the formula (6.3).

6.4 Two Pairs of Binary Operations

Since any fuzzy quantum logic is a σ -orthomodular poset with respect to the standard
fuzzy set inclusion as partial order, it is endowed with two pairs of binary operations:
the Łukasiewicz union � and intersection , by the aid of which it is defined, and
the ordinary join ∨ and meet ∧ with respect to the partial order ⊆. Of course, since
by Theorem2 any quantum logic with an ordering set of probability measures can
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be isomorphically represented as a fuzzy quantum logic, one can also think of it as
equipped with these two pairs of binary operations. Therefore, it is of the utmost
importance to study the relations between these operations and also seek for their
logical interpretation.

The theorems of this section were announced without proofs in the author’s talk
given at the 10th International Congress of Logic, Methodology, and Philosophy of
Science (Firenze, August 1995) [12]. However, due to an unexpected delay, proofs
were only published 5years later in [13].

Theorem 3 Let L(U) be a quantum logic of fuzzy subsets of a universe U and let
A, B ∈ L(U). Then A  B ∈ L(U) iff A � B ∈ L(U), and in this case A and B are
compatible, A  B = A ∧ B, and A � B = A ∨ B.

Beforewe proceed to the proof of Theorem3,we shall prove the following lemma:

Lemma 1 Let L(U) be a quantum logic of fuzzy subsets of a universe U and let
A, B ∈ L(U). Then

(a) If both A ∨ B ∈ L(U) and A � B ∈ L(U), then A ∨ B = A � B.
(b) If both A ∧ B ∈ L(U) and A  B ∈ L(U), then A ∧ B = A  B.

Proof We shall prove first that for any two fuzzy subsets A, B of the same universe
U
(i) (A � B)(x) − (A ∪ B)(x) ≤ 1

2
and

(ii) (A ∩ B)(x) − (A  B)(x) ≤ 1
2

for any x ∈ U , where A ∪ B and A ∩ B denote, respectively, Zadeh union (4.5) and
Zadeh intersection (4.6) of fuzzy sets A and B.

(i) Let us calculate the difference

Di (x) = (A � B)(x) − (A ∪ B)(x)

= min[A(x) + B(x), 1] − max[A(x), B(x)]. (6.10)

There are four possibilities:

1. A(x) ≤ B(x) and A(x)+ B(x) ≤ 1, then A(x) ≤ 1
2 and Di (x) = A(x)+ B(x)−

B(x) ≤ 1
2 .

2. A(x) ≤ B(x) and A(x)+ B(x) ≥ 1, then B(x) ≥ 1
2 and Di (x) = 1− B(x) ≤ 1

2 .

3. A(x) ≥ B(x) and A(x)+ B(x) ≤ 1, then B(x) ≤ 1
2 and Di (x) = A(x)+ B(x)−

A(x) ≤ 1
2 .

4. A(x) ≥ B(x) and A(x)+ B(x) ≥ 1, then A(x) ≥ 1
2 and Di (x) = 1− A(x) ≤ 1

2 .
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(ii) Let us calculate the difference

Dii (x) = (A ∩ B)(x) − (A  B)(x)

= min[A(x), B(x)] − max[A(x) + B(x) − 1, 0]. (6.11)

This difference takes the following values in the four cases already considered:

1. Dii (x) = A(x) − 0 = A(x) ≤ 1
2 .

2. Dii (x) = A(x) − [A(x) + B(x) − 1] = 1 − B(x) ≤ 1
2 .

3. Dii (x) = B(x) − 0 = B(x) ≤ 1
2 .

4. Dii (x) = B(x) − [A(x) + B(x) − 1] = 1 − A(x) ≤ 1
2 .

Proof of part (a).
Let us assume that both A ∨ B and A � B belong to L(U). Since (A ∪ B)(x) is a

pointwise supremum of membership functions A(x) and B(x), i.e., a supremum in
the class of all possible functions thatmap the universeU into [0, 1], while (A∨B)(x)

is a supremum in the restricted class of membership functions of elements of L(U),
the following inequalities hold for any x in L(U).

(A ∪ B)(x) ≤ (A ∨ B)(x) ≤ (A � B)(x) (6.12)

Lemma 3.1 of [9] states that if E, F ∈ L(U) and E ⊆ F , then F − E ∈ L(U), where
F − E is defined by the pointwise difference of respective membership functions:

(F − E)(x) = F(x) − E(x) for all x ∈ L(U). (6.13)

Therefore, the fuzzy set D = A � B − A ∨ B belongs to L(U) and by (i) for any
x ∈ U

D(x) = (A � B)(x) − (A ∨ B)(x) ≤ (A � B)(x) − (A ∪ B)(x) ≤ 1

2
. (6.14)

Therefore, for any x ∈ U

(D  D)(x) = max[2D(x) − 1, 0] = 0, (6.15)

and by the condition (d) of the definition of a fuzzy quantum logic

D = A � B − A ∨ B = ∅. (6.16)

This means that for any x ∈ U

(A � B)(x) − (A ∨ B)(x) = 0, (6.17)

which finishes the proof of part (a).
The proof of part (b) is analogous. �
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Proof of Theorem 3. Using the Lemma 3.1 of [9] already mentioned one can easily
check that any quantum logic of fuzzy sets is a D-poset in the sense of Kôpka [14] in
which a partial order relation is the standard fuzzy set inclusion (4.3) and a general
difference that appears in the definition of a D-poset is the pointwise difference of
fuzzy sets (6.13).

We shall prove first that if A, B, A  B ∈ L(U), then A � B ∈ L(U).
Let us assume that A, B, AB ∈ L(U). It can easily be checked that A−(AB) ⊆

B ′ = U − B and B − (A  B) ⊆ A′ = U − A, and therefore, A  B fulfills the
condition (3) of Theorem 1 of [15]. Consequently, we infer from the condition (4)
of this Theorem that there exists a triplet {A1, B1, C} of pairwise weakly disjoint
(orthogonal) elements of L(U) such that A = A1 + C and B = B1 + C (the sums
defined pointwisely on U). Moreover, it can be inferred from Kôpka’s proof that
in our case C = A  B. Therefore, A1 + B1 + C = A − C + B − C + C =
A + B − A  B = A � B, and from the condition (c) of the definition of a fuzzy
quantum logic it follows that A � B ∈ L(U).

The proof of the implication A, B, A � B ∈ L(U) ⇒ A  B ∈ L(U) also utilizes
Theorem 1 of [15] and proceeds analogously.

Since weak disjointness of elements of a quantum logic of fuzzy sets is equivalent
to their orthogonality (in the traditional sense), the joins A1 ∨ C and B1 ∨ C exist
in L(U) by condition (d) of the (traditional) definition of a quantum logic. Since
for pairwise weakly disjoint sets a membership function of their Łukasiewicz union
coincides with an algebraic sum of their membership functions [10], it follows from
Lemma1 and from the condition (c) of the definition of a fuzzy quantum logic that

A1 ∨ C = A1 � C = A1 + C = A − C + C = A (6.18)

B1 ∨ C = B1 � C = B1 + C = B − C + C = B, (6.19)

which proves the compatibility of A and B.
Finally, let us notice that any quantum logic contains meets and joins of all pairs

of compatible elements. Therefore, it follows from Lemma1 that

A  B = A ∧ B, A � B = A ∨ B, (6.20)

which finishes the proof of Theorem3. �
Theorem3 cannot be “reversed” in the sense that for arbitrary A, B ∈ L(U)

neither the existence of A ∧ B, A ∨ B in L(U), nor the compatibility of A and
B implies the existence of A  B, A � B in L(U). To justify the first part of this
statement let us note that, since by Theorem3 the existence of a Łukasiewicz union
or intersection of any two elements of L(U) implies their compatibility and since
Boolean algebras are quantum logics in which all elements are compatible (see, e.g.,
[5]), Theorem3 yields the following Corollary:
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Corollary 1 If A  B or A � B exists in a fuzzy quantum logic for all A, B ∈ L(U),
A �= B, then L(U) is a Boolean algebra.

Therefore, if the existence of a meet or join of two elements A, B ∈ L(U) had
been sufficient for the existence inL(U) of their Łukasiewicz union and intersection,
every orthomodular lattice would have been a Boolean algebra, which is obviously
not true. The fact that compatibility of two elements of a fuzzy quantum logic is
not sufficient for the existence of their Łukasiewicz union and intersection is shown
in the following example given already in [12]. This example actually shows that
Corollary 1 also cannot be “reversed”, i.e., that even if L(U) is a Boolean algebra,
AB and A�B do not necessarily belong toL(U) for all possible pairs A, B ∈ L(U),
A �= B.

Example 1 Let X be a triangle with vertices a, b, c, and let L(X) consist of all
fuzzy subsets of X whose membership functions are affine functions and assume on
all vertices of X values 0 or 1 only. It was proved in [16] that suchL(X) is a Boolean
algebra, therefore, all its elements are compatible. Let us denote A, B elements of
L(X) such that A(a) = 1, A(b) = A(c) = 0, B(b) = 0, B(a) = B(c) = 1,
and let us construct their Łukasiewicz union and intersection. Since (A � B)(a) =
min(1+1, 1) = 1, (A�B)(b) = min(0+0, 1) = 0, (A�B)(c) = min(0+1, 1) = 1,
and (A  B)(a) = max(1 + 1 − 1, 0) = 1, (A  B)(b) = max(0 + 0 − 1, 0) = 0,
(A B)(c) = max(0+1−1, 0) = 0, A� B and A B would have belonged toL(X)

iff their membership functions had been affine. But this is impossible: Let d be the
midpoint of the edge ab. Since values taken by affine functions on the point d should
be arithmetic means of their values taken on the vertices a and b, it may be expected
that (A � B)(d) = (A  B)(d) = 1

2 . However, from A(d) = B(d) = 1
2 , it is inferred

that (A � B)(d) = min( 12 + 1
2 , 1) = 1, and (A  B)(d) = max( 12 + 1

2 − 1, 0) = 0.
Therefore, membership functions of the sets A� B and A B are not affine functions
and the sets A � B and A  B do not belong to L(X).

The other difference between the Łukasiewicz and order-theoretic operations on
the quantum logics of fuzzy sets concerns idempotency: Order-theoretic operations
of meet and join are idempotent, i.e. A ∧ A = A ∨ A = A for any A ∈ L(U). In
contrast, neither A � A, nor A  A belongs to L(U) for any “genuine fuzzy”, i.e.,
non-crisp element of L(U):

Theorem 4 Let L(U) be a quantum logic of fuzzy subsets of a universe U and let
A ∈ L(U). Then A � A and A  A belong to L(U) iff A is a crisp subset of U , i.e.,
iff A(x) ∈ {0, 1} for all x ∈ U . In this and only in this case Łukasiewicz operations
coincide with ordinary set-theoretic union and intersection, and are idempotent.

Proof Let us note first that Łukasiewicz’s operations are never idempotent when
applied to a genuine fuzzy subset A of U , i.e., if there exists x ∈ U such that
A(x) �= 0, 1. Indeed, there are two possibilities:
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1. If 0 < A(x) ≤ 1
2 , then (A  A)(x) = max[2A(x) − 1, 0] = 0 �= A(x), and

(A � A)(x) = min[2A(x), 1] = 2A(x) �= A(x).
2. If 1

2 < A(x) < 1, then (A  A)(x) = 2A(x) − 1 which, if equal to A(x) would
imply A(x) = 1, and (A � A)(x) = 1 �= A(x).

The fact that various unions and intersections of fuzzy sets when applied to
crisp sets coincide with ordinary set-theoretic union and intersection (which are
obviously idempotent) belongs to mathematical folklore. In particular, the crispness
of A ∈ L(U) obviously yields

A  A = A ∧ A = A = A ∨ A = A � A ∈ L(U). (6.21)

Therefore, the nontrivial part of the proof consists in showing that if A A and A� A
belong to L(U), then A is crisp. This, however, follows from Theorem3 since in this
case the equalities (6.21) hold and, by the first part of the proof, A is necessarily
crisp.

�
Before closing this section let us consider an often studied case of a so called

concrete logic (see, e.g., [5]) which is a family � of crisp subsets of a fixed set �

such that

(a) ∅ ∈ �

(b) if A ∈ �, then � − A ∈ �

(c) if {Ai : i ∈ N} is a countable family of mutually disjoint sets, then ∪i Ai ∈ �.

Since the traditional set-theoretic operations can also be thought of as the
Łukasiewicz operations applied to this “degenerate” (from the point of view of the
fuzzy set theory) case, we see that all three conditions that appear in the definition of
a concrete logic are actually identical with the first three conditions of the definition
of a quantum logic of fuzzy sets. Since the remaining condition (d) of the definition
of a fuzzy quantum logic (if A  A = ∅ then A = ∅) is always satisfied by any crisp
set A, we see that our definition of a quantum logic of fuzzy sets is a straightforward
generalization of the definition of a concrete logic or, the other way round, that every
quantum logic of fuzzy sets automatically becomes a concrete logic if all its elements
are crisp.

Let us, however, note that concrete logics, although providing nice mathematical
examples of a general notion of a quantum logic, are not very interesting from
the physical point of view, since they admit ordering families of two-valued (i.e.,
dispersion-free) stateswhile, byGleason’s theorem,Hilbertian quantum logics do not
possess any two-valued state if the dimension of aHilbert space is strictly greater than
two (see, e.g., [5]). Therefore, abandoning crisp models and working with genuine
fuzzy sets is an indispensable step if one wants to produce set-theoretic models of
quantum logics which are of any value to quantum physics.



References 45

References

1. Birkhoff, G. and J. von Neumann, “The logic of quantum mechanics”, Annals of Mathematics,
37 (1936) 823–843.

2. Husimi, K. “Studies on the foundations of quantum mechanics I”, Proceedings of the Physico-
Mathematical Society of Japan, 19 (1937) 766–789.
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Chapter 7
B-vN Quantum Logic as ∞-Valued
Łukasiewicz Logic

7.1 The Necessity of Using Many-Valued Logic
for Description of Future Non-certain Events

Jan Łukasiewicz argued in his address which he delivered as a Rector of Warsaw
University at the Inaguration of the academic year 1922/1923 [1] that “All sentences
about future facts that are not yet decided belong to this [many-valued] category. Such
sentences are neither true at the present moment ... nor are they false...”. This attitude
is clearly applicable to sentences concerning the results of future experiments which
are not decided at present. Let us note the full analogy between Aristotle’s statement
often quoted by Łukasiewicz “There will be a sea battle tomorrow” and quantum
mechanical predictions of the form “A photon will pass through a filter”. In both
cases the position of classical 2-valued logic is such that since the occurrence or non-
occurrence of these events is not certain, these statements cannot be endowed with
any truth value, i.e., they do not belong to the domain of 2-valued logic. Therefore,
changing 2-valued logic to many-valued logic while discussing future non-certain
events seems to be inevitable—otherwise we could not reasonably talk about them
at all.

Let us note that in fact we use, usually unconsciously, many-valued logic in such
situations in everyday life. When one says “There will be a sea battle tomorrow”,
one usually intuitively ascribes some degree of probability (possibility?, likelihood?)
to this future event. This is exactly the way in which Łukasiewicz interpreted truth
values of statements about future events that are different form0 and1 in his numerous
papers [2].1

While considering future events in the quantum realm we are in much better
situation because these truth values are known with absolute precision: they are

1The idea that probabilities should be interpreted as truth values of many-valued logic was for the
first time expressed by Łukasiewicz already in 1913 in [3].
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simply probabilities that these events will happen, obtained from the theory by exact
calculations and the Born rule. Let us note that when an experiment is finished and its
results are known with certainty we are back to classical 2-valued logic—exactly the
same happens in macroscopic world (sea battle either happened or it did not happen).

In macroscopic world usually the process of converging of many-valued truth
values to the extreme values 0 or 1 can be seen “dynamically” and can be traced in
a more detailed way: when two hostile navies approach each other, truth value of a
sentence “There will be a sea battle” tends to unity and finally attains it at themoment
the sea battle begins. On the contrary, if navies are more and more distant, truth value
of the considered sentence tends to 0. In the quantum realm such detailed description
of the process of passing from many-valued to 2-valued logic is not provided, except
for Objective Collapse Theories.

7.2 Is B-vN Quantum Logic Two-Valued?

According to the traditional approach, Birkhoff-vonNeumann quantum logic defined
in the previous chapter is considered to be a 2-valued logic which is, however, non-
classical because distributive law is replaced in it by a weaker orthomodular law.
The alleged 2-valuedness follows from the fact that an element of a quantum logic
is interpreted as an experimentally verifiable “yes-no” proposition about a physical
system that occurs to be either true or false when a suitable experiment, designed to
check it, is completed. It should be stressed that this alleged 2-valuedness concerns
truth-evaluation made post factum, while pre factum truth-evaluation of such state-
ments, according to argumentation originated by Łukasiewicz and presented in the
previous section, inevitably forces us to enter the domain of many-valued logic.

Let us also note that elements of a quantum logic can be equivalently thought of
as mathematical representations of properties of a physical system (e.g. a photon’s
property of passing through a polarizer). In the case of classical physical systems
properties of these systems or, equivalently, two-valued propositions that express
these properties, define uniquely traditional (crisp) subsets of sets of pure states
(phase spaces) of these systems consisting of exactly those pure states for which the
considered properties hold. On the other hand, each crisp subset A of a phase space
defines a two-valued proposition about a physical system (e.g., of the form “a state
of a system belongs to A”) which is obviously equivalent to the original one that
defines a subset A, so one can go back and forth in this construction without meeting
any difficulties.

In the case of a quantum system the construction described above of crisp subsets
of a phase space that remain in one-to-one correspondence with properties of a
physical system cannot, in general, be performed. In most cases even if a quantum
object (e.g., a photon) is in a pure state (e.g., in a definite state of linear polarization)
one is not able to state whether it has or has not a specific property (e.g. a property of
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passing through a linear polarizer oriented under the angle α �= 0, π
2 to the direction

of photon’s polarization) before the suitable experiment is done. It is, in fact, a
credo of the Copenhagen Interpretation of quantum mechanics that “unperformed
experiments have no results” [4]. Consequently, the Copenhagen School forbids
even to consider whether a quantum system has or has not any of its properties
before a suitable experiment is performed. This is very much like forbidding to
consider whether a navy N is victorious (or not) before the experiment (sea battle)
is completed. However, we can often evaluate on the basis of other information
(the number of ships, quality of weapon, previous battles, etc.) probability that the
navy N will tomorrow win a sea battle. In this sense, according to the very spirit of
probabilistic interpretation of truth-values in infinite-valued logic we can say, even
before the battle is finished, that the navy N has a property of being victorious to the
degree, say, 0.8 and at the same time that it has a property of not being victorious to
the degree 1 − 0.8 = 0.2 or, equivalently, that the proposition “the navy N will win
a sea battle tomorrow” is today true to the degree 0.8 and false to the degree 0.2.

It is sometimes argued that if we knew, like Laplace’s Demon, all initial conditions
with absolute accuracy, then the course of all future events could be predicted with
certainty, so the apparent randomness, indeterminism, etc., that we see around would
disappear and nothing but the classical 2-valued logic would be necessary to describe
all events, also the future ones. This argument is false since it does not concern
the Real World that we live in but an Imaginary World that, to the best of our
contemporary knowledge, does not exist: The Real World we live in is a quantum
world so the very possibility of knowing simultaneously, with absolute accuracy,
positions and momenta of all particles that form any object (e.g., warships and their
crews) is excluded by the fundamental laws of quantum mechanics.

The situation of a linearly polarized photon before it reaches a polarizer is of
exactly the same type as the previously considered situation of a navy before a sea
battle.According to the “many-valued interpretation” we can safely say that a linearly
polarized photon actually possesses a property of being able to pass through a linear
polarizer oriented under the angle α to the direction of its polarization to the degree
defined by the Malus Law, i.e. cos2 α or, equivalently, that cos2 α is the truth value
of the proposition “a linearly polarized photon will pass through a linear polarizer
oriented under the angle α to the direction of its polarization”. To paraphrase the
title of Peres’ paper [4], we can say that “unperformed experiments have all their
possible results, each of them to the degree allowed by suitable quantum-mechanical
calculations”.

Of course when the experiment is completed we are back to the classical two-
valued logic since a photon either actually passed or did not pass through the polarizer
(similarly, a sea battle either happened or did not happen). Loosely speaking, we can
say that during an experiment a kind of a “logical collapse” of the infinite-valued
logic onto the two-valued logic occurs, this collapse being a logical counterpart of
von Neumann’s collapse of a wave function.
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7.3 The Many-Valued Model of B-vN Quantum Logic

So far we have established that statements about the results of yet to be performed
experiments on quantum systems or about yet to be tested properties of these objects
should be treated as belonging to the domain of infinite-valued logic. The natural
question arises as to what kind of logical operations andwhat kind of structure should
families of such statements be endowed with? Theorem 2 in Chap.6, which enables
any Birkhoff–von Neumann quantum logic L possessing an ordering set of states
S to be expressed as a family L(S) of fuzzy subsets of S endowed with partially
defined Łukasiewicz operations, together with basic relations between fuzzy sets
and infinite-valued logic described in Chap.4, strongly suggest that one small step
more should be taken and L should be represented further as a family of infinite-
valued propositions. However, before we do this let us note that the identification
of a (many-valued) truth-value of a proposition “x belongs to A” with a value of a
membership function μA(x) was carried out “locally” in the point x , so the whole
fuzzy set A is in one-to-one correspondence not with a single proposition but with a
propositional function a(·) = “ · belongs to A”. This propositional function becomes
a proposition, i.e. it may be endowed with a truth value only when we insert into it
a (name of a) specific element of a considered universe of discourse, in our case a
(name of a) specific state of the considered physical system.

There are, in general, constant propositional functions (therefore, they are, in fact,
propositions) that assume the same truth value for every argument in their domain.
We shall be particularly interested in two of them: the always-false propositional
function f that assumes truth value 0 in all points of its domain and the always-true
propositional function t that assumes truth value 1 in all points of its domain. In
the case of propositional functions about physical systems they can be linguistically
expressed, for example, as f = “the studied physical system does not exist” and t =
“the studied physical system exists”, but other linguistic expressions for these propo-
sitional functions are also possible. However, it follows from the results concerning
fuzzy set representation of the B-vN quantum logic that many-valued representa-
tion of the B-vN quantum logic does not allow any constant propositional function
except f and t (we quote here from [5] the relevant theorem in its original fuzzy set
formulation):

Theorem 5 A quantum logic L(U) of fuzzy subsets of a universe U does not contain
any set whose membership function is constant except crisp sets ∅ and U .

Proof If A ∈ L(U) has a constant membership function, then either A ⊆ A′, or
A′ ⊆ A. In the first case A ∧ A′ = A which, by the condition (c) of the traditional
definition of a quantum logic, means that A = ∅. In the second case A ∨ A′ = A
which, by the same condition, means that A = U . �

Inwhat followswe shall always be dealingwith families of propositional functions
defined on common domains. In such cases one can define logical operations on
propositional functions in a pointwise way, for example



7.3 The Many-Valued Model of B-vN Quantum Logic 51

c(·) ≡ a(·) � b(·) iff c(x) ≡ a(x) � b(x), (7.1)

for all arguments x in their common domain, where the symbol ≡ denotes “has
the same truth value as”, i.e. for any argument x in the common domain of these
propositional functions

τ (c(x)) = max[τ (a(x)) + τ (b(x)) − 1, 0]. (7.2)

One can easily note that if the always-false and always-true propositional functions
are defined on the common domain, then each of them is the Łukasiewicz negation
(3.1) of the other.

Two propositional functions a(·), b(·) (defined on the common domain) will be
termed exclusive or we shall say that they exclude each other iff their Łukasiewicz
conjunction (3.13) is always false, i.e., iff

a(·) � b(·) ≡ f (7.3)

which, by (7.2), means that

τ (a(x)) + τ (b(x)) ≤ 1 (7.4)

for any argument x in their common domain.
Nowwe can reformulate Theorem 2 in Chap.6 using the language ofmany-valued

logic and the above-introduced notion of exclusive propositional functions.

Theorem 6 Any quantum logic L with an ordering set of probability measures S can
be isomorphically represented as a family L(S) of propositional functions defined
on S and satisfying the following conditions:

(a) L(S) contains the always-false propositional function f .
(b) L(S) is closed with respect to the Łukasiewicz negation (3.6), i.e., if a(·) ∈ L(S),

then ¬a(·) ∈ L(S).
(c) L(S) is closed with respect to the Łukasiewicz disjunction (3.12) of pairwise

exclusive propositional functions, i.e. if a(·)i � a(·) j ≡ f for i �= j , then
i a(·)i ∈ L(S).

(d) The always-false propositional function f is the only propositional function in
L(S) that excludes itself, i.e., for any a(·) ∈ L(S), if a(·) � a(·) ≡ f , then
a(·) ≡ f .

Conversely, any family of many-valued propositional functions defined on a com-
mon domain D and satisfying conditions (a)–(d) is a quantum logic in the Birkhoff–
von Neumann sense whenever we identify propositional functions that assume the
same truth value for every argument in their common domain D. This family is par-
tially ordered by the partial order relation generated by the Łukasiewicz implication
(3.5):

a(·) ≤ b(·) iff [a(·) → b(·)] ≡ t, (7.5)
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with the Łukasiewicz negation (3.6) as ortho complementation, the orthogonality
of the elements coinciding with their exclusiveness (7.3), and an ordering set of
probability measures being generated by arguments in their common domain D
according to the formula

sx (a(·)) = τ (a(x)) for all x ∈ D. (7.6)

Proof Let us note that the right-hand side of the formula (7.5) means that for every
x ∈ D

τ [a(x) → b(x)] = min[1 − τ (a(x)) + τ (b(x)), 1] = τ (t) = 1, (7.7)

which yields
τ (a(x)) ≤ τ (b(x)) (7.8)

for any x ∈ D, i.e., it actually establishes pointwise partial order between proposi-
tional functions, provided that we identify propositional functions that assume the
same truth value on all elements in their common domain, which is a standard pro-
cedure in the construction of the Lindenbaum algebras of logics.

In view of the links between fuzzy sets and infinite-valued logic, which have
been extensively commented on, all the remaining conditions of Theorem 6 are just
“many-valued translations” of respective conditions of Theorem 2 in Chap.6, which
finishes the proof. �

Let us see nowwhat can be said about the “many-valuedmodel”L(S) of the B-vN
quantum logic, in particular about the Łukasiewicz logical operations that appear in
it, in view of the results already obtained for the “fuzzy set model”L(S) of this logic.

We infer from Corollary 1 that L(S) is, in general, only a partial logic, i.e. the
Łukasiewicz conjunction � and disjunction  are not defined for all pairs of propo-
sitional functions, since if they are, L(S) necessarily has an algebraic structure of
a Boolean algebra. Let us note that in view of the widely discussed (see, for exam-
ple, Chap. 8 of Jammer’s book [6]) interpretational difficulties in treating the order-
theoretic operations of meet ∧ and join ∨ as proper models of conjunction and dis-
junction in the case of noncompatible elements of an orthomodular lattice of closed
subspaces of a Hilbert space, the fact that � and  are only partially defined on L(S)
is more of a virtue than a drawback. On the other hand Theorem 3 in Chap.6 implies
that Łukasiewicz’s connectives are properly modelled by the order-theoretic opera-
tions whenever the former are defined. Therefore, if we adopt the hypothesis that �
and , rather than ∧ and ∨, are proper models of the quantum-logical conjunction
and disjunction, Theorem 3 in Chap.6 explains why Birkhoff and vonNeumann (and
their followers during 60years of development of quantum logic theory) could treat
meet and join as algebraic representations of the quantum-logical conjunction and
disjunction in spite of the difficulties raised by this choice. It should be mentioned,
however, that in view of Example 1 (the non-existence of Łukasiewicz’s operations
on some pairs of elements of some Boolean algebras) and also in view of the general
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non-idempotency of these operations, the problem of the proper “logical” interpre-
tation of � and  is far from being settled.

The fact that a(·)  b(·) is defined when a(·) � b(·) ≡ f may suggest that
the Łukasiewicz disjunction  is, in the case of quantum logics, a many-valued
counterpart of a two-valued exclusive disjunction (exclusive-OR, XOR) rather than
a counterpart of the ordinary disjunction. However, this hypothesis is based on
the tacit assumption that � is a many-valued counterpart of the ordinary conjunc-
tion, while a two-valued connective associated to the exclusive-OR by de Morgan’s
laws is the equivalence, not conjunction. Moreover, the case a(·) � b(·) ≡ f is
not the only case when a(·) � b(·) and a(·)  b(·) are defined in L(S). Indeed,
if τ (a(x)) + τ (b(x)) ≥ 1 for all x ∈ S , which means that a(·)  b(·) ≡ t , then
τ (¬a(x)) + τ (¬b(x)) = 1 − τ (a(x)) + 1 − τ (b(x)) ≤ 1, so (¬a(·))�(¬b(·)) ≡ f
and by Theorem 6 (c) (¬a(·))  (¬b(·)) ∈ L(S), which, by condition (b) of
this theorem, de Morgan’s identity, and the many-valued version of Theorem 3 in
Chap.6 yields ¬[(¬a(·))  (¬b(·))] ≡ a(·) � b(·) ∈ L(S), although in this case the
Łukasiewicz conjunction a(·) � b(·) is not always false.

Let us note that since by conditions (a) and (b) of Theorem 6 the always-true
propositional function t belongs to L(S), the fact that a(·)  b(·) ≡ t implies a(·) �
b(·) ∈ L(S) is also a straightforward consequence of Theorem 3 in Chap.6.

We shall show now that the two possibilities listed above are the only possibil-
ities allowed for genuine many-valued propositional functions that belong to L(S)
when a further regularity condition stating that these functions should behave well
with respect to convex mixtures of states (i.e., be affine functions) is assumed. This
means that the Łukasiewicz conjunction � and disjunction  are defined for a pair of
propositional functions a(·), b(·) ∈ L(S) only when their Łukasiewicz conjunction
a(·) � b(·) is always false or when their Łukasiewicz disjunction a(·)  b(·) is
always true. This fact will be shown in the following theorem which, for technical
simplicity, is again presented in the equivalent fuzzy set formulation.

Theorem 7 Let U be a convex set and let L(U) be a quantum logic of fuzzy subsets
of U . If all elements of L(U) have affine membership functions, then for any A, B ∈
L(U), A � B and A  B belong to L(U) if and only if A � B = ∅ or A  B = U .

Proof The “if” part of the proof follows immediately from the condition (c) of the
definition of a quantum logic of fuzzy sets and considerations contained in the last
but one paragraph preceding this theorem.

In order to prove the “only if” part let us recall that A � B = ∅ means that
A(x) + B(x) ≤ 1 for all x ∈ U while A  B = U means that A (x) + B(x) ≥ 1
for all x ∈ U . Let us assume that neither of these conditions hold, i.e. that there
exist x1, x2 ∈ U such that A(x1) + B(x1) = (A + B)(x1) > 1 and A(x2) +
B(x2) = (A + B)(x2) < 1 which, respectively, means that (A  B)(x1) = 1
and (A � B)(x2) = 0. Since the sum of affine functions is also an affine function,
this implies that an interval (x1, x2) = {x | x = αx1 + (1 − α)x2,α ∈ (0, 1)}
contains a point y = βx1 + (1 − β)x2, β ∈ (0, 1) such that (A + B)(y) = A(y) +
B(y) = 1. This makes A � B ∈ L(U) and A  B ∈ L(U) impossible since their
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membership functions cannot be affine: indeed, if theywere affine, then (A�B)(y) =
β(A � B)(x1) + (1 − β)(A � B)(x2) = β[A(x1) + B(x1) − 1] + (1 − β) · 0 > 0
and (A  B)(y) = β(A  B)(x1) + (1−β)(A  B)(x2) = β ·1 + (1−β)[A(x2) +
B(x2)] = β[1−(A+B)(x2)]+(A+B)(x2) < 1−(A+B)(x2)+(A+B)(x2) = 1.�

From the physical point of view the assumption of the affinity of all proposi-
tional functions that express properties of a physical system is very natural since it
guarantees that these functions behave “correctly” with respect to decompositions of
mixed states into their pure components. The following example shows that without
this assumption Theorem 7 could not be proved.

Example 2 Let U = {x1, x2, x3, x4} and let L(U) consist of fuzzy subsets of U
whose membership functions take in these points the respective values:

∅ = {0, 0, 0, 0} U = {1, 1, 1, 1}
A = {0.7, 0, 0, 0} A′ = {0.3, 1, 1, 1}
B = {0, 0.7, 0, 0} B ′ = {1, 0.3, 1, 1}
C = {0.1, 0.2, 0, 1} C ′ = {0.9, 0.8, 1, 0}
D = {0.2, 0.1, 1, 0} D′ = {0.8, 0.9, 0, 1}
E = {0.1, 0.9, 0, 1} E ′ = {0.9, 0.1, 1, 0}
F = {0.2, 0.8, 1, 0} F ′ = {0.8, 0.2, 0, 1}
G = {0.3, 0.3, 1, 1} G ′ = {0.7, 0.7, 0, 0}

It can be checked that L(U) is a quantum logic of fuzzy subsets of U . Actually,
it is isomorphic to 24, i.e. to the Boolean algebra of all crisp subsets of U . Since
E � F = {0, 0.7, 0, 0} = B �= ∅ and E  F = {0.3, 1, 1, 1} = A′ �= U , we see that
in this case Theorem 7 does not hold.

Let us note that, since in Example 2 not all Łukasiewicz unions and intersections
of elements of L(U) belong to L(U) (e.g., E � B = {0, 0.6, 0, 0} /∈ L(U), E  B =
{0.1, 1, 0, 1} /∈ L(U)), the Boolean algebra of fuzzy sets studied in this example can
replace that studied in Example 1 in Chap.6, in order to show that Corollary 1 cannot
be reversed and that the compatibility of two elements of a quantum logic of fuzzy
sets is not a sufficient condition for the existence of their Łukasiewicz union and
intersection in this logic. Finally, it should be mentioned that, since in the case of
crisp sets Łukasiewicz operations coincidewith the ordinary set-theoretic operations,
the same conclusions as drawn from Example 2 could be drawn from considering
any Boolean algebra of all crisp subsets of an n-element set with n ≥ 3. However,
L(U) studied in Example 2 consists of genuine fuzzy sets which ensures that the
conclusions obtained are not artifacts caused by using non-fuzzy sets.

Let us finish this section with three general remarks.
(1) Since infinite-valued logic (respectively, fuzzy set theory) is “infinitely many

times” more rich in binary operations than two-valued logic (resp. classical set the-
ory), it may be so that any particular pair of themwould exhibit some features that are
counterintuitive from the point of view of classical two-valued logic (resp. classical
set theory). Therefore, it is possible that any particular answer given to the prob-
lem of which two-valued connectives are the most proper two-valued counterparts
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of the Łukasiewicz operations on L(S) will give rise to objections based on some
counterintuitive consequences of that choice.

(2) In spite of the above-mentioned objections, we stress that the very possibil-
ity that quantum-logical conjunction and disjunction are modelled by Łukasiewicz
operations rather than by meet and join opens new interesting possibilities and may
have far-reaching consequences. In particular, the problems connected with EPR-
type experiments, Bell–Kochen-Specker theorem, etc., where always conjunctions
of propositions are considered (e.g. of the form “a quantum object in a state s has
property a and property b”), should be carefully reconsidered in view of the possi-
bility that these conjunctions are modelled by Łukasiewcz conjunctions that do not
always have to be defined, not by meets that are, in the case of lattices, defined for
all possible pairs of propositions.

(3) One of the objections raised against Birkhoff-von Neumann quantum logic
(esp. by logicians) is that it is not truth-functional, i.e. that a knowledge of the
truth values of elementary statements does not enable the truth values of compound
statements to be calculated, in particular conjunctions and disjunctions of elementary
statements. Indeed, order-theoretic operations of meet and join are not “local” in the
sense that in order to find a ∧ b and a ∨ b one must know the whole order-theoretic
structure of a poset or a lattice, i.e. the whole relation of partial order defined on
a family of propositions. On the contrary, only a knowledge of the truth values
of propositions a(x) and b(x) is necessary to calculate truth values of (a � b)(x)
and (a  b)(x). Thus, Birkhoff–von Neumann quantum logic in its infinite-valued
representation turns out, at least in this restricted sense, to be truth-functional.

7.4 Application: Analysis of a Two-Slit Experiment

In order to show the usefulness of the obtained infinite-valued representation of B-vN
quantum logic, we shall apply it to the description of a two-slit experiment.

Let us note that since expressions for truth-values of bothŁukasiewicz conjunction
(3.13) and Łukasiewicz disjunction (3.12) contain the sum τ (a) + τ (b), we can
distinguish the following four cases:
(1a) If 0 ≤ τ (a) + τ (b) < 1, then τ (a � b) = 0 and 0 ≤ τ (a  b) < 1.
(1b) If τ (a) + τ (b) = 1, then τ (a � b) = 0 and τ (a  b) = 1.
(2a) If 1 < τ (a) + τ (b) < 2, then 0 < τ (a � b) < 1 and τ (a  b) = 1.
(2b) If τ (a)+ τ (b) = 2 (i.e. τ (a) = τ (b) = 1), then τ (a � b) = 1 and τ (a  b) = 1.

Therefore, we obtain the following theorem:

Theorem 8 For any two infinite-valued propositions a, b either

(1a) their Łukasiewicz conjunction is false, i.e. τ (a � b) = 0, and their Łukasiewicz
disjunction is not true, i.e. τ (a  b) < 1, or

(1b) their Łukasiewicz conjunction is false, i.e. τ (a � b) = 0, and their Łukasiewicz
disjunction is true, i.e. τ (a  b) = 1 , or
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(2a) their Łukasiewicz conjunction is neither false nor true, i.e. 0 < τ (a � b) < 1,
and their Łukasiewicz disjunction is true, i.e. τ (a  b) = 1, or

(2b) both their Łukasiewicz conjunction and disjunction are true.

Let us note that, besides the trivial possibility τ (a) = τ (b) = 0 which obviously
yields τ (a � b) = τ (a  b) = 0, only possibilities (1b) and (2b) are allowed by clas-
sical bivalent logic. Therefore, infinite-valued logic allows the behaviour of quantum
systems to be described more precisely than can be done with the use of classical
two-valued logic.We shall use this opportunity to cast some light on the famouswave-
particle duality exhibited in the two-slit experiment. Let a(s) (resp. b(s)) denote a
proposition “a quantum object in a state s passes through slit A (resp. B)”. If we inter-
pret Łukasiewicz conjunction a(s) � b(s) as representing a compound proposition
“a quantum object in a state s passes through slit A and through slit B” and
Łukasiewicz disjunction a(s)  b(s) as representing a compound proposition “a
quantum object in a state s passes through slit A or through slit B”, then truth-values
of these compound propositions can be used to decide whether a quantum object in
the state s reveals its wave-like or particle like properties:

• τ (a(s) � b(s)) = 0 and τ (a(s)  b(s)) = 1 means that it is impossible to state
experimentally that a quantum object in a state s passes simultaneously through
slit A and through slit B, although we can be sure that in any experiment it will
pass either through slit A or through slit B (i.e. this or is exclusive). Therefore,
an object in a state s reveals purely particle-like behaviour.

• if τ (a � b) = 1 (in which case also τ (a  b) = 1), we can be sure that an object
passes simultaneously through slit A and through slit B, and so behaves like a pure
wave.

These two cases, corresponding to possibilities (1b) and (2b) of Theorem 8, can
equallywell be describedwith the aid of classical bivalent logic. However, Theorem8
also allows possibilities (1a) and (2a) which, in the case of the two-slit experiment,
can be interpreted as follows:

(1a) We are not sure whether an object passes through slit A or B, although we
are sure that it does not pass simultaneously through A and through B. This
possibility seems to correspond to a non-perfect experiment in which an object
behaving like a pure particle can pass either through slit A or through slit B
(but, because τ (a � b) = 0, not simultaneously through both slits, so this or is
again exclusive), although we can not be sure whether it passes through either
slit.

(2a) We can be sure that an object passes through slit A or through slit B (or
through both slits since this or is non-exclusive) which allows both wave-like
and particle-like behaviour. However, in contrast to the case (2b) in which an
object behaves like a pure wave we cannot be sure that it passes through both
slits simultaneously (since τ (a � b) < 1), therefore, its behaviour is not 100%
wave-like. On the other hand its behaviour is also not 100% particle-like since,
in contrast to the case (1b) we are also not sure that it does not pass through both
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slits simultaneously (since τ (a � b) > 0). Therefore, an object reveals partial
wave-like and partial particle-like behaviour, i.e. it behaves simultaneously but
not “to the full extent” like a wave and like a particle. This kind of behav-
iour is not allowed by the orthodox Copenhagen paradigm based on classical
bivalent logic. Therefore, it came as something of a surprise when Wooters
and Zurek [7] demonstrated that quantum mechanical formalism enables non-
perfect knowledge to be obtained in a two-slit experiment about the path of
a quantum object which shows its non-100% particle-like behaviour simulta-
neously with a non-perfect interference pattern, which demonstrates that this
behaviour is also non-100% wave-like. The predictions of Wooters and Zurek
were confirmed by Mittelstaedt et al. [8] in a carefully performed experiment
in which they found that “A photon possesses simultaneously particle proper-
ties and wave properties. ...Even for a very high value of the particle property
... there is still a nonvanishing amount of the wave property ... which leads
to an observable and significant interference pattern”. This experimental result
strongly supports the considerations of the previous section, according towhich
the proper logic of a quantum system is a version of infinite-valued Łukasiewicz
logic endowed with Łukasiewicz negation (3.6), implication (3.5) and partially
defined Łukasiewicz disjunction (3.12) and conjunction (3.13).

References

1. Łukasiewicz, J. An Address Delivered as a Rector of the Warsaw University at the Inauguration
of the Academic Year 1922/1933; reprinted as: “On determinism” in [2], pp. 110–128.

2. Łukasiewicz, J. Selected Works, ed. by L. Borkowski (North-Holland, Amsterdam, and PWN—
Polish Scientific Publishers, Warszawa, 1970).

3. Łukasiewicz, J. Die logischen Grundlagen der Wahrscheinlichkeitsrechnung (Acad. der Wiss.
Kraków, 1913); reprinted as “Logical foundations of probability theory” in [2], pp. 16–63.

4. Peres, A. “Unperformed experiments have no results”, American Journal of Physics, 46 (1978)
745–747.

5. Pykacz, J. “Fuzzy set ideas in quantum logics”, International Journal of Theoretical Physics,
31 (1992) 1767–1783.

6. Jammer, M. The Philosophy of Quantum Mechanics (Wiley-Interscience, New York, 1974).
7. Wooters, W. K. and W. H. Zurek, “Complementation in the double-slit experiment: Quantum

nonseparability and a quantitative statement of Bohr’s principle”,Physical Reviews D, 19 (1979)
473–484.

8. Mittelstaedt, P.,A. Prieur, andR. Schieder, “Unsharp particle-wave duality in a photon split-beam
experiment”, Foundations of Physics, 17 (1987) 891–903.



Chapter 8
Perspectives

Isomorphic representation of Birkhoff–von Neumann quantum logics, and therefore
also of orthomodular lattices L(H) of (orthogonal projections onto) closed subspaces
of Hilbert spaces by families of fuzzy sets endowed with Łukasiewicz operations
opens new opportunities for solving at least two long-standing problems, namely the
development of quantum probability calculus in a way completely analogous to the
orthodox Kolmogorovian probability theory, and the construction of a phase space
representation of quantum mechanics not plagued by the appearance of negative
probabilities. However, it should be stressed that what we present here is only a brief
prospect for future studies which will certainly require much further investigation.

8.1 Fuzzy Set Models of Quantum Probability

In some experiments on quantum systems the relative frequencies of obtaining
various results, interpreted as probabilities, do not fulfil the numerical constraints
imposed by classical (Kolmogorovian) probability theory. Such instances, usually
connected with the violation of Bell’s inequalities, strongly indicate the necessity of
modification of the probability calculus used in quantum mechanics.

There are several approaches to the subject that can generally be termed “quantum
probability” and even the brief review of all of these would lead us far beyond
the scope of this section. Therefore, we shall concentrate on the quantum-logical
treatment of this subject.

In the quantum logic approach to the foundations of quantum mechanics the
Kolmogorovian triple (�,F , P) consisting of a space of elementary events �, a
Boolean σ-algebra F of selected subsets of � (random events), and a probability
measure P, is replaced by a couple (L , p) consisting of a σ-orthocomplete ortho-
modular poset (i.e. quantum logic) L and a probability measure (state) p defined
on L . It follows from the very definition (see Sect. 6.1) that probability measures on
quantum logics satisfy all numerical constraints imposed on Kolmogorovian prob-
ability measures: they are nonnegative, normalized, and σ-additive on families of
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pairwisely disjoint (in the language of “orthodox” quantum logics: pairwisely orthog-
onal) elements. However, this clearly does not mean that Kolmogorovian probability
calculus, which is based on Boolean σ-algebras, is an adequate tool for quantum
mechanics.1 This is particularly evident in the quantum logic approach where sev-
eral theorems were proved showing that various versions of Bell-type inequalities
are satisfied by probability measures defined on a quantum logic if this logic is a
Boolean algebra (see, e.g. papers by Santos [2], Pulmannová and Majernik [3], or
Beltrametti and Ma̧czyński [4, 5]).

As well as these numerical and “structural” differences between classical and
quantum probabilities there is one more important difference: quantum random
events are not subsets of the space of elementary events but mathematical objects
of another kind. In the Hilbert space model they are represented by closed sub-
spaces of a Hilbert space (or orthogonal projections onto such subspaces), while in
an abstract model they are simply elements of an orthomodular poset. This does not
allow quantum random events to be treated as subsets of a phase space of a physical
system.

In the quantum logic approach the states of any physical system are represented
by probability measures on a logic of this system, and they form a convex set whose
extreme points represent the pure states of the system. In the particular case of
the phase space description of a classical statistical system its logic is identified
with a Boolean σ-algebra of Borel subsets of a phase space and pure states are
Dirac measures concentrated on one-point subsets of a phase space, so they may be
identified with points of a phase space of a system. On the other hand elements of
a logic, i.e. Borel subsets of a phase space may be identified with random events
since each random event is in an obvious way defined by a property of the physical
system: it consists of those pure states for which the given property holds. Therefore,
traditional set-theoretic unions and intersections of random events are generated by
disjunctions and conjunctions of propositions about the physical system under study
in full accordance with the spirit of Kolmogorovian probability theory.

This is no more true for a quantum system. Properties of a quantum system, rep-
resented by the elements of a logic, can not be further represented by crisp subsets of
the set of pure states. However, we have shown in Sect. 6.3 that there is a possibility
of representing the elements of a logic even of a “genuine” quantum system by fuzzy
subsets of the set of its pure states. It should be noted that the conditions (a)–(d) that
define a quantum logic of fuzzy sets show remarkable similarity to the conditions
that define Boolean σ-algebras of random events in the Kolmogorovian probability
theory. The difference between the condition (c) and the Kolmogorovian require-
ment that a σ-algebra of random events should be closed with respect to countable
unions of arbitrary, not only pairwise disjoint, sets seems to be unimportant since
this requirement of Kolmogorov is superfluous: probability measures are assumed to

1Ballentine’s [1] conviction that he has “refuted any and all claims that ‘classical’ probability theory
is not valid in quantum mechanics” seems to be based on a superficial analysis in which he took
into account neither Bell-type inequalities, nor the differences in structures on which classical and
quantum probability measures are defined.
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be σ-additive on pairwise disjoint, not arbitrary sequences of sets and it is possible
to construct reasonable “classical” probability theory with this requirement being
suitably modified (for a detailed discussion of this problem see the book of Fine [6]).
Since the condition (d) in the domain of crisp sets is trivially satisfied, we infer that
a notion of a quantum logic of fuzzy sets is in a sense a “minimal” generalization
of the notion of a σ-algebra of random events to a family of fuzzy sets endowed
with Łukasiewicz connectives, which enables a reasonable probability calculus to be
constructed.

After replacing the abstract quantum logics that appear in the foundations of
quantum probability calculus by families of fuzzy subsets of sets of pure states of
quantum systems, one obtains, at the price of allowing fuzzy sets to come into play, a
perfect parallelism between Kolmogorovian probability calculus applied to classical
statistical systems and quantum probability calculus applied to quantum systems: in
both cases random events are represented by subsets of sets of pure states of physical
systems and they are defined by the properties of these systems. Conjunctions and
disjunctions of properties of physical systems define intersections and unions of
respective subsets. However, as we argued in Chap.6, in contrast to the situation
encountered in classical statistical physics, in quantum physics the results of these
operations do not always belong to a quantum logic of fuzzy sets, even if this logic is
a lattice. Therefore, the usage of joins and meets in order to construct “compound”
quantum random events—a common practice in quantum probability—instead of
Łukasiewicz unions and intersections, can be a source of serious difficulties.

Finally, it should be mentioned that it is possible to build a fuzzy probability
theory using, instead of Łukasiewicz operations, other operations chosen from the
vast family of fuzzyunions and intersections. This has in fact beendone in a number of
papers (see, e.g. [7–11] to mention a few) in which a fully-fledged fuzzy probability
theory was developed. However, in the majority of these papers their authors use
the original Zadeh operations which cannot be used to build fuzzy set models of
quantum logics since, as it was earlier noticed (in the realm of a many-valued logic)
by Gonseth [12], when combined with the standard fuzzy set complementation, they
do not satisfy the excluded middle law and the law of contradiction for any genuine
fuzzy set.

8.2 Fuzzy Phase Space Representation of Quantum
Mechanics

The standard example of a “genuine” quantum logic (i.e. logic that is non-Boolean
and can be used to describe genuine quantum systems) is a Hilbertian quantum
logic L(H) consisting of closed subspaces of a Hilbert space H used to describe a
quantum system or, equivalently, orthogonal projections onto these closed subspaces.
Probability measures on L(H) are generated by density operators via the formula

pρ̂( Â) = T r(ρ̂ Â), (8.1)
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where ρ̂ is a density operator representing a state of a physical system and Â an
orthogonal projector. Isomorphic representation, provided by Theorem 2 in Chap.6,
of the Hilbertian quantum logic by a family of fuzzy subsets of the set of density
operators could be a first step toward constructing a phase space representation of
quantum mechanical systems free from the well-known difficulties connected with
the appearance of negative probabilities.

The representation of elements of an abstract quantum logic L by a family of fuzzy
subsets of the set of its states enables the logics of quantum systems and the logics of
classical statistical systems to be compared more easily, which may provide hints for
constructing phase space representations of quantum systems. Both similarities and
characteristic differences between these two kinds of logics are particularly well-
seen when we restrict the underlying universes on which logics are built to sets P
consisting of pure states only. In both cases each property a ∈ L of a physical system
� defines, by the formula (6.3), a subset A ⊆ P consisting of pure states in which
the system � has the property a (in other words, the set A is defined by the predicate
“has the property a”). In the case of classical statistical systems all subsets of P
defined in this way are necessarily traditional crisp sets, since pure states in classical
mechanics are dispersion-free: A(s) = s(a) ∈ {0, 1}, which expresses the fact that
a classical system in a pure state either definitely has or definitely has not any of its
properties. Therefore, the membership function of the set A ⊆ P is, in this case, a
characteristic function and the set A is crisp.

This is no longer the case in quantum mechanics since here even pure states are,
in general, dispersive, so the set A ⊆ P defined in the manner described above
is, in general, a genuine fuzzy set. Nevertheless, if we assume that properties of a
physical system form a (quantum) logic, in both cases the family L(P) consisting
of all fuzzy subsets of P defined in the above-described manner obviously has to
satisfy conditions (a)–(d) of Theorem2 in Chap.6. As we noticed in the previous
section, in the phase space description of a classical statistical system L(P) can be
identified with a Boolean σ-algebra B(�) of Borel subsets of a phase space � since
it is believed that any such subset represents a property of a classical system. In the
Hilbert space description of a quantum system L(P) can be identified with a family
L(S1(H)) of fuzzy subsets of the unit sphere S1(H) in a Hilbert spaceH associated
with a system. In this case the fuzzy sets A ⊆ S1(H) which form the quantum logic
L(S1(H)) are defined by the formula:

A(ψ) = 〈ψ| Âψ〉 (8.2)

whereψ ∈ S1(H) is a unit vector and Â is an orthogonal projection inH. However, it
should in general also be possible to represent the properties of a quantum system by
a family of fuzzy subsets of a phase space � instead of fuzzy subsets of a unit sphere
S1(H) of a Hilbert space H, obtaining in this way a phase space representation of
a quantum system. Such representation could be obtained by mapping points ψ ∈
S1(H) onto points (〈p〉ψ, 〈q〉ψ) ∈ � with 〈p〉ψ , 〈q〉ψ being the mean values of the
momentumand the position operators in a stateψ respectively.Avalue A(〈p〉ψ, 〈q〉ψ)
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of amembership function of a fuzzy subset A ⊂ � that represents a property a should
in this case be given by the formula (8.2), i.e.

A(〈p〉ψ, 〈q〉ψ) = 〈ψ| Âψ〉 (8.3)

where Â ∈ L(H) is an orthogonal projection representing the property a in the
Hilbertian quantum logic L(H). Of course numerical values of all probability mea-
sures defined on a logic of properties of a quantum system have to remain the same
since it makes no difference whether the properties of a system are represented by
closed subspaces of a Hilbert space, orthogonal projections onto these subspaces,
fuzzy subsets of the unit sphere in a Hilbert space or suitably defined fuzzy subsets
of a phase space �.

Therefore, the phase space representation of quantum systems outlined above
should be free from such counterintuitive ingredients as the negative probabilities
which have plagued phase space representations of quantummechanics from the very
birth of this idea. It is our view that the necessity of working with σ-orthomodular
posets of fuzzy subsets instead of Boolean σ-algebras of crisp subsets of a phase
space is not too high price to be paid for this.
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Chapter 9
The Many-Valued Interpretation
of Quantum Mechanics

In this chapter we shall present an outline of a proposal expressed in a subtitle of
this book: the many-valued interpretation of quantum mechanics, according to the
scheme adopted in Chap.2. However, before we do this, let us consider the following
situation.

I go to sleep tonight and I consider to what extent I possess a property W7 =
“being awaken on the next day before 7 a.m.”. The degree to which I possess this
property at present depends both on my present state s = {my tiredness, the ammount
of wine drunk tonight, kind of food eaten for supper, etc.}, and also on the future
“experimental arrangement” e ={traffic noise, air temperature, barking of dogs, etc.}.
It is obvious that the degree to which I possess the property W7, or equivalently, the
present truth value of the statement “W7” depends on both s and e.

When we adopt such point of view, it is natural to accept that quantum objects
which possess, in the MV sense, all their properties, reveal, depending on experi-
mental arrangements, either wave-like or particle-like or both [1] properties.

In general, numbers from the unit interval traditionally interpreted as probabilities
that suitable experiments will reveal some properties of quantum objects, are accord-
ing to the propounded interpretation reinterpreted asMV truth values or “fuzzy” (i.e.,
different from 0 or 1) degrees of possessment of these properties. This refers also
to superpositions of states. If a state of a quantum object is |ψ〉 = �ci |ψi 〉, then
the numbers |ci |2 are traditionally interpreted as probabilities that the object will be
found in one of the states |ψi 〉 when a suitable experiment is done. According to
the propounded interpretation these numbers represent degrees to which the object,
which is in the state |ψ〉, is at the same time in the respective states |ψi 〉. Such an
interpretation explains, for example, the result of an experiment by Robert et al. [2]
(see also [3]), in which an atom in a state that was a superposition of two space-time
well separated locations, emitted light exactly as if it was in these two locations
simultaneously.
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Main ideas:

• All the mathematical formulation of QM is left intact.
• Quantummechanics is fundamentally about results of futureobservations or results
of future experiments.

• Statements about future non-certain events in natural way belong to the domain
of many valued logic.

• Quantum objects possess all their properties even before they are measured, how-
ever in the MV sense, i.e., to the extent p ∈ [0, 1], previously interpreted as
a probability that suitable measurement would reveal that a property have been
possessed.

Virtues:

• Indeterminism.
• No problems with wave-particle duality.
• Disappearance of various “paradoxes” yielded by assumed prior-to-measurement
existence (in the sense of 2-valued logic) of properties of quantum objects.

• Full compatibility with the “orthodox quantum logic”, i.e., the mathematical struc-
ture that is characteristic to a family of closed subspaces of a Hilbert space used
in the mathematical description of a quantum system.

• Clarification of the meaning of conjunctions and disjunctions of statements about
quantum objects.

• Opening the possibility of constructing quantum probability calculus in a full
analogy to the classical Kolmogorovian probability calculus.

• Opening the possibility of constructing (fuzzy) phase-space representation of
quantum mechanics.

Drawbacks:

Before we state two obvious drawbacks of the proposed interpretation we would like
to draw attention of a reader to the fact that this interpretation of QM is still “in statu
nascendi”. Therefore, we do hope that these drawbacks may disappear in the future.

• Inability to explain the apparent existence of non-local correlations between prop-
erties of spatially separated objects.1

• Inability to solve the “objectification problem”, i.e., a problem how “potential”
properties become “actual” in the course of a measurement.2

1This is not a problem to a vast number of scholars that are comfortable with the apparent “non-
locality of QM”. Our “guts feeling” is that no influence, carrying information or not, should prop-
agate faster than light. This issue is, however, not addressed at the present stage of development of
the proposed MVI of QM.
2This problem is solved if MVI is applied to any of “Objective Collapse Theories”, but of course
not when it is applied to the “Orthodox QM”.
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